首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-walled carbon nanotube (SWNT) thin film electrodes have been printed on flexible substrates and cloth fabrics by using SWNT inks and an off-the-shelf inkjet printer, with features of controlled pattern geometry (0.4–6 cm2), location, controllable thickness (20–200 nm), and tunable electrical conductivity. The as-printed SWNT films were then sandwiched together with a piece of printable polymer electrolyte to form flexible and wearable supercapacitors, which displayed good capacitive behavior even after 1,000 charge/discharge cycles. Furthermore, a simple and efficient route to produce ruthenium oxide (RuO2) nanowire/SWNT hybrid films has been developed, and it was found that the knee frequency of the hybrid thin film electrodes can reach 1,500 Hz, which is much higher than the knee frequency of the bare SWNT electrodes (˜158 Hz). In addition, with the integration of RuO2 nanowires, the performance of the printed SWNT supercapacitor was significantly improved in terms of its specific capacitance of 138 F/g, power density of 96 kW/kg, and energy density of 18.8 Wh/kg. The results indicate the potential of printable energy storage devices and their significant promise for application in wearable energy storage devices.   相似文献   

2.
We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300–1150 cm2/(V·s).   相似文献   

3.
We analyze the chemical bonding in graphene using a fragmental approach, the adaptive natural density partitioning method, electron sharing indices, and nucleus-independent chemical shift indices. We prove that graphene is aromatic, but its aromaticity is different from the aromaticity in benzene, coronene, or circumcoronene. Aromaticity in graphene is local with two π-electrons delocalized over every hexagon ring. We believe that the chemical bonding picture developed for graphene will be helpful for understanding chemical bonding in defects such as point defects, single-, double-, and multiple vacancies, carbon adatoms, foreign adatoms, substitutional impurities, and new materials that are derivatives of graphene.   相似文献   

4.
Based on the underlying graphene lattice symmetry and an itinerant magnetism model on a bipartite lattice, we propose a unified geometric rule for designing graphene-based magnetic nanostructures: spins are parallel (ferromagnetic (FM)) on all zigzag edges which are at angles of 0° and 120° to each other, and antiparallel (antiferromagnetic (AF)) at angles of 60° and 180°. The rule is found to be consistent with all the systems that have been studied so far. Applying the rule, we predict several novel graphene-based magnetic nanostructures: 0-D FM nanodots with the highest possible magnetic moments, 1-D FM nanoribbons, and 2-D magnetic superlattices.   相似文献   

5.
We report a simple method to produce graphene nanospheres (GNSs) by annealing graphene oxide (GO) solution at high-temperature with the assistance of sparks induced by the microwave absorption of graphite flakes dispersed in the solution. The GNSs were formed by rolling up of the annealed GO, and the diameters were mostly in the range 300–700 nm. The GNS exhibited a hollow sphere structure surrounded by graphene walls with a basal spacing of 0.34 nm. Raman spectroscopy and X-ray photoelectron spectroscopy of the GNSs confirmed that the GO was efficiently reduced during the fabrication process. The resulting GNSs may open up new opportunities both for fundamental research and applications, and this method may be extended to the synthesis of other nanomaterials and the fabrication of related nanostructures.   相似文献   

6.
In this work, we developed a novel triboelectricity-assisted polymer-free method for the transfer of large-area chemical vapor deposited graphene films. With the assistance of electrostatic forces from friction-generated charges, graphene sheets were successfully transferred from copper foils to flexible polymer substrates. Characterization results confirmed the presence of high quality graphene with less defects and contaminations, compared to graphene transferred by conventional poly(methyl methacrylate)-mediated processes. In addition, the graphene samples possessed outstanding electrical transport capabilities and mechanical stability, when studied as electron transfer matrixes in graphene/ZnO hybrid flexible photodetectors. Our results showed a broad application potential for this transfer method in future flexible electronics and optoelectronics.
  相似文献   

7.
We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the simultaneous formation of MnO2 with a nanowall morphology via cathodic electrochemical deposition. The morphology and structure of the GMHs were systematically characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The resulting GMHs combine the advantages of GN and the nanowall array morphology of MnO2 in providing a conductive network of amorphous nanocomposite, which shows good electrochemical capacitive behavior. This simple approach should find practical applications in the large-scale production of GMHs.   相似文献   

8.
An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5–10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.   相似文献   

9.
Finite-sized graphene sheets, such as graphene nanoislands (GNIs), are promising candidates for practical applications in graphene-based nanoelectronics. GNIs with well-defined zigzag edges are predicted to have spin-polarized edge-states similar to those of zigzag-edged graphene nanoribbons, which can achieve graphene spintronics. However, it has been reported that GNIs on metal substrates have no edge states because of interactions with the substrate.We used a combination of scanning tunneling microscopy, spectroscopy, and density functional theory calculations to demonstrate that the edge states of GNIs on an Ir substrate can be recovered by intercalating a layer of Si atoms between the GNIs and the substrate. We also found that the edge states gradually shift to the Fermi level with increasing island size. This work provides a method to investigate spin-polarized edge states in high-quality graphene nanostructures on a metal substrate.
  相似文献   

10.
Silver nanowire films are promising alternatives to tin-doped indium oxide (ITO) films as transparent conductive electrodes. In this paper, we report the use of vacuum filtration and a polydimethylsiloxane (PDMS)-assisted transfer printing technique to fabricate silver nanowire films on both rigid and flexible substrates, bringing advantages such as the capability of patterned transfer, the best performance among various ITO alternatives (10 Ω/sq at 85% transparency), and good adhesion to the underlying substrate, thus eliminating the previously reported adhesion problem. In addition, our method also allows the preparation of high quality patterned films of silver nanowires with different line widths and shapes in a matter of few minutes, making it a scalable process. Furthermore, use of an anodized aluminum oxide (AAO) membrane in the transfer process allows annealing of nanowire films at moderately high temperature to obtain films with extremely high conductivity and good transparency. Using this transfer technique, we obtained silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85%, a sheet resistance of 10 Ω/sq, with good mechanical flexibility. Detailed analysis revealed that the Ag nanowire network exhibits two-dimensional percolation behavior with good agreement between experimentally observed and theoretically predicted values of critical volume.   相似文献   

11.
A facile method is proposed for the synthesis of reduced graphene oxide nanosheets (RGONS) and Au nanoparticle-reduced graphene oxide nanosheet (Au-RGONS) hybrid materials, using graphene oxide (GO) as precursor and sodium citrate as reductant and stabilizer. The resulting RGONS and Au-RGONS hybrid materials were characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, atomic force microscopy, transmission electron microscopy, and X-ray diffraction. It was found that the RGONS and Au-RGONS hybrid materials formed stable colloidal dispersions through hydrogen bonds between the residual oxygen-containing functionalities on the surface of RGONS and the hydroxyl/carboxyl groups of sodium citrate. The electrochemical responses of RGONS and Au-RGONS hybrid material-modified glassy carbon electrodes (GCE) to three kinds of biomolecules were investigated, and all of them showed a remarkable increase in electrochemical performance relative to a bare GCE.   相似文献   

12.
A two-dimensional (2D) Si film can form between a graphene overlayer and a Ru(0001) substrate through an intercalation process. At the graphene/2D-Si/Ru(0001) surface, the topmost graphene layer is decoupled from the Ru substrate and becomes quasi-freestanding. The interfacial Si layers show high stability due to the protection from the graphene cover. Surface science measurements indicate that the surface Si atoms can penetrate through the graphene lattice, and density functional theory calculations suggest a Si-C exchange mechanism facilitates the penetration of Si at mild temperatures. The new mechanism may be involved for other elements on graphene, if they can bond strongly with carbon. This finding opens a new route to form 2D interfacial layers between graphene and substrates.   相似文献   

13.
Fabrication of silver nanowire transparent electrodes at room temperature   总被引:1,自引:0,他引:1  
Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heat-treatment at about 200 °C which forms connecting junctions between AgNWs. Such a heating process is, however, one of the drawbacks of the fabrication of AgNW electrodes on heat-sensitive substrates. Here it has been demonstrated that the electrical conductivity of AgNW electrodes can be improved by mechanical pressing at 25 MPa for 5 s at room temperature. This simple process results in a low sheet resistance of 8.6 Ω/square and a transparency of 80.0%, equivalent to the properties of the AgNW electrodes heated at 200 °C. This technique makes it possible to fabricate AgNW transparent electrodes on heat-sensitive substrates. The AgNW electrodes on poly(ethylene terephthalate) films exhibited high stability of their electrical conductivities against the repeated bending test. In addition, the surface roughness of the pressed AgNW electrodes is one-third of that of the heat-treated electrode because the AgNW junctions are mechanically compressed. As a result, an organic solar cell fabricated on the pressed AgNW electrodes exhibited a power conversion as much as those fabricated on indium tin oxide electrodes. These findings enable continuous roll-to-roll processing at room temperature, resulting in relatively simple, inexpensive, and scalable processing that is suitable for forthcoming technologies such as organic solar cells, flexible displays, and touch screens.   相似文献   

14.
We revisit the mechanism leading to the photoresponse of locally illuminated single-walled carbon nanotube (SWNT) films deposited on substrates. Our study examines the impact of multiple device parameters and provides many evidences that the position-dependent photocurrent is dominated by photothermoelectric effects. The photoresponse arises from the temperature variations at the metal-nanotube film interfaces, where mismatches of the Seebeck coefficients are measured. Our work also stresses the impact of the substrates, electrode materials and post-thermal treatments on the amplitude and dynamics of the photoresponse. The knowledge gained should guide the future development of photothermoelectric devices and detectors based on SWNTs.   相似文献   

15.
Direct synthesis of high-quality graphene on dielectric substrates is of great importance for the application of graphene-based electronics and optoelectronics. However, high-quality and uniform graphene film growth on dielectric substrates has proven challenging due to limited catalytic ability of dielectric substrates. Here, by employing a Cu ion implantation assisted method, high-quality and uniform graphene can be directly formed on various dielectric substrates including SiO2/Si, quartz glass, and sapphire substrates. The growth rate of graphene on the dielectric substrates was significantly improved due to the catalysis of Cu. Moreover, during the graphene growth process, the Cu atoms gradually evaporated away without involving any metal contamination. Furthermore, an interesting growth behavior of graphene on sapphire substrate was observed, and the results show the graphene domains growth tends to grow along the sapphire flat terraces. The ion implantation assisted approach could open up a new pathway for the direct synthesis of graphene and promote the potential application of graphene in electronics.  相似文献   

16.
We report an epitaxial growth of graphene, including homo- and hetero-epitaxy on graphite and SiC substrates, at a temperature as low as ∼540 °C. This vapour-phase epitaxial growth, carried out in a remote plasma-enhanced chemical vapor deposition (RPECVD) system using methane as the carbon source, can yield large-area high-quality graphene with the desired number of layers over the entire substrate surfaces following an AB-stacking layer-by-layer growth model. We also developed a facile transfer method to transfer a typical continuous one layer epitaxial graphene with second layer graphene islands on top of the first layer with the coverage of the second layer graphene islands being 20% (1.2 layer epitaxial graphene) from a SiC substrate onto SiO2 and measured the resistivity, carrier density and mobility. Our work provides a new strategy toward the growth of graphene and broadens its prospects of application in future electronics.   相似文献   

17.
Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent, acetonitrile, using expanded graphite (EG) as the starting material. It is proposed that the dipole-induced dipole interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene. The facile and effective solvothermal-assisted exfoliation process raises the low yield of graphene reported in previous syntheses to 10 wt%–12 wt%. By means of centrifugation at 2000 rpm for 90 min, monolayer and bilayer graphene were separated effectively without the need to add a stabilizer or modifier. Electron diffraction and Raman spectroscopy indicate that the resulting graphene sheets are high quality products without any significant structural defects.   相似文献   

18.
The metrology of two-dimensional (2D) materials such as graphene, boron nitride or molybdenum disulfide grown by chemical vapor deposition (CVD) is critical for the optimization of their synthesis. We demonstrate the use of film-induced frustrated etching (FIFE) as a facile, scalable method to reveal and quantify structural defects in continuous thin sheets. The sensitivity of the analysis technique to intentionally induced lattice defects in graphene compares favorably to the sensitivity of Raman spectroscopy. A strong correlation between the measured defectiveness and the maximum carrier mobility in graphene emphasizes the importance of the technique for growth optimization. Due to its ease and widespread availability, we anticipate that FIFE will find wide application in the characterization of CVD-synthesized 2D materials.   相似文献   

19.
One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their current and future diverse technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronic, and energy harvesting devices.   相似文献   

20.
High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Klein band-to-band tunneling is significant for sub-100 nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20 nm. At a channel length of 20 nm, the intrinsic cut-off frequency remains at a few THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. The intrinsic cut-off frequency is close to the LC characteristic frequency set by graphene kinetic inductance (L) and quantum capacitance (C), which is about 100 GHz·μm divided by the gate length.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号