首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Mechanistic numerical analysis and molecular dynamics (MD) simulation are employed to understand the material detachment mechanism associated with chemical mechanical polishing. We investigate the mechanics of scratch intersection mechanism to obtain a characteristic length scale and compare the theoretical predictions with previous experimental observations on ductile copper discs at the micro-scale. First, an analytical model is developed based on mechanics of materials approach. The analytical model includes the effects of strain hardening during material removal as well as the geometry of indenter tip. In the next step, molecular simulations of the scratch intersection are performed at the atomistic scale. The embedded atom method (EAM) is utilized as the force field for workpiece material and a simplified tool-workpiece interaction is assumed to simulate material removal through scratch intersection mechanism. Both models are utilized to predict a characteristic length of material detachment related to material removal during scratch intersection. The predictions from two approaches are compared with experimental observations in order to draw correlations between experiment and simulation. The insights obtained from this work may assist in understanding the mechanism for chemical mechanical planarization (CMP), and even be applied to other different machining and polishing events.  相似文献   

2.
为得到超光滑的数字光盘母盘玻璃基片表面,研究玻璃基片的亚纳米级抛光技术。分别采用2 m、0.3 m超细氧化铈抛光液以及纳米氧化硅抛光液进行三步化学机械抛光(Chemical mechanical polishing, CMP),抛光后最终表面粗糙度Ra达到0.44 nm,为目前报道的数字光盘母盘玻璃基片抛光的最低值。原子力显微镜分析表明,抛光后的表面超光滑且无微观缺陷。通过对玻璃基片CMP中机械作用及化学作用进行分析,对抛光机理进行了探讨。  相似文献   

3.
Molecular dynamics simulations are conducted on the dislocation behavior at the apices and edges of cuboidal Ni3Al precipitate in a pure Ni matrix, or the idealized γ/γ′ microstructure in a Ni-based superalloy. A tensile simulation of the [001] direction is implemented with a periodic cell that has eight cubic precipitates in order to investigate the nucleation site of dislocation in the idealized microstructure with no defects other than the γ/γ′ interfaces. The effect of residual internal stresses on the stability of the interfaces is also discussed. Other simulations are conducted on the behavior of edge dislocations nucleated from a free surface and proceeding in the γ matrix toward γ′ precipitates under shear force. Dislocation pinning at γ′ precipitates, bowing-out in the γ channel, pile-up and nucleation of superdislocation in the γ′ precipitate are simulated and inspected in detail. Discussions on the size of the γ/γ′ microstructure and the sharpness of the edge of the γ′ precipitate are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号