首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
合成了题述试剂SPAHQ,可用其作钴显色剂。生成的红棕色1:4(Co:SPAHQ)螯合物λmax=480nm,ε480=8.1×104L·mol-1·cm-1,Δλ=90nm。0~1.2μg/mLCo2+遵守比尔定律。1~10mg的7种离子和0.035~0.94mg的18种离子不干扰。用于间接分光光度测定VB12,结果与亚硝基R盐法一致。本法既灵敏、选择性也好。  相似文献   

2.
以合成的新试剂5-Br-TAR为往前衍生试剂,首次用阴离子表面活性剂S,D.S.为对离子试剂。以含1×10(-2)mol·L(-1)的pH5.8的乙酸-乙酸钠缓冲溶液和3.5×10(-4)mol·L(-1)的S.D.S.的甲醇-水(68:32,V/V)为流动相,在C(18)柱上,15min内分离测定了Co(Ⅱ)、Rh(Ⅲ)、Cr(Ⅵ)的5-Br-TAR配合物。当SNR=2时,检出限分别为0.49、0.32、0.44ppb。用于废水及电镀液中Co(Ⅱ)、Cr(Ⅵ)的测定,效果较好。  相似文献   

3.
研究了新试剂2-(2',4',6'-三羟苯基偶氮)苯胂酸(TPBA)与铁(Ⅲ)的显色反应。结果表明,铁(Ⅲ)与试剂在pH4.4的HCl-NaAc介质中发生专一显色反应,生成1:2棕红色配合物,其最大吸收位于535nm,摩尔吸光系数为4.22×103L·mol-1·cm-1,线性范围为0~3μg/mL。拟定的方法选择性很高,可直接用于较复杂样品如土壤中总铁的测定。又由于5倍量Fe(Ⅱ)的共存不干扰,方法尚适用于Fe(Ⅲ)-Fe(Ⅱ)体系中Fe(Ⅲ)的选择性价态分析。分析结果均令人满意。  相似文献   

4.
在PH5.3~7.1的六次甲基四胺缓冲溶液中,Al(Ⅲ)—CAS—CPB—TritonX—100络合物的最大吸收波长为630nm,ε=1.10x10 ̄5L.mol ̄(-1).cm ̄(-1),摩尔组成比Al(Ⅲ):CAS:CPB=1:3:3,铝量在0.2~8μg/25mol范围内符合比尔定律,回收率99~104%。本法以盐酸羟胺和邻菲啉作联合掩蔽剂,常见金属离子干扰少,用本法测定自来水、废水中微量铝,结果令人满意。  相似文献   

5.
介绍了Pd2+-I--TBAB(四丁基溴化铵)三元缔合物萃取光度法测定钯的方法。该方法以L(+)抗坏血酸作为掩蔽剂,干扰离子Cu2+,Fe3+的允许量均为2.5μg/mL,Pd2+浓度为0~4μg/mL,完全符合比耳定律(萃取剂作参比),方法的相关摩尔吸光系数ε为2.09×104L/(mol·cm),桑德尔灵敏度S为5.07×10-3μg/cm2。工作曲线的应用范围为1~4μg/mL。  相似文献   

6.
报道了作者新近合成的显色剂与Fe(Ⅲ)的显色反应。在CTMAB存在下,Fe(Ⅲ)与试剂在pH5.6的缓冲溶液中形成稳定的深紫红色三元配合物,其组成为1:2:1,最大吸收波长为655nm,表观摩尔吸光系数达1.05×105L·mol-1·cm-1,灵敏度高,选择性好。Fe(Ⅲ)含量在0~10μg/25mL范围内服从比尔定律。应用于石灰石、镁砂、铝合金及水样中微量Fe(Ⅲ)的测定,结果满意。  相似文献   

7.
报道了新荧光试剂3-苯基-5-(4′-硝基-2′-羧基苯偶氮)-2-硫代-4-噻唑啉酮(3P-4NRACP)的合成,通过元素分析、红外光谱、核磁共振谱及质谱确证了其结构。在pH5.6时,它与铜(Ⅱ)形成稳定的荧光螫合物,在γex/λem=305nm/405nm处产生强荧光,其荧光强度与铜(Ⅱ)的浓度在1.57×10-10~1.89×10-8mol/25mL范围内呈线性关系,灵敏度达1.57×10-10mol/g的铜(Ⅱ)。用此方法测定了杂交米、糯米及香米中的痕量铜(Ⅱ),结果满意。  相似文献   

8.
研究了Mo(Ⅵ)与Tiron的反应,发现在pH4.0的HAc-NaAc介质中形成1:1配合物,该配合物在252nm、315nm有两个吸收峰,而在可见光区无吸收峰。测得ε252=6.9×10 ̄3L·mol-1·Cm-1,ε315=3.5×103L·mol-1·Cm-1。据此建立了测定Mo(Ⅵ)的方法,在252nm和315nm处的线性范围分别为1.6×10-6mol·L-1~2.O×10-4mol·L-1和3.2×10-4mol·L-1~2.0×10-4mol·L-1。检出限分别为8.O×10-7mol·L-1和1.6×10-6mol·L-1.PO_4 ̄3+、SiO_3 ̄2-对测定无干扰,而W(Ⅵ)、V(Ⅴ)、Fe(Ⅲ)等有干扰。该法试用于有机磷合钼聚多酸盐样品的测定,结果满意,方法回收率96%~102%,变异系数≤1.l%(n=12)。  相似文献   

9.
Rh(Ⅲ)-TAC-CTMAB体系分光光度法测定Rh的研究   总被引:1,自引:0,他引:1  
研究了在阳离子表面活性剂十六烷基三甲基溴化铵(CTMAB)存在下,用2-(2一噻唑偶氮)-对甲酚(TAC),在pH5.0的HAc-NaAc缓冲液中分光光度法测定Rh。Rh(Ⅲ)与TAC的络合比为1:1,表观摩尔吸光系数为ε680nm=1.25×104L·mol-1·cm-1,在1.2~8μg/10mL范围内符合比尔定律。方法的特征灵敏度为0.085μg/mL(1%吸收)。试验了贵金属及常见金属的干扰情况,并研究了干扰消除的方法,EDTA的加入可以消除一定量的Cu、Co、Ni、Zn的干扰。对催化剂试样的分析结果令人满意,变异系数均小于3%。  相似文献   

10.
研究了新显色剂4-(2-吡啶偶氮)-邻苯二酚(PACP)与Hg(Ⅱ)的显色反应。在阳离子表面活性剂溴化十六烷基三甲胺(CTMAB)及pH=9.5NH3-NH4Cl缓蚀溶液中,试剂与Hg(Ⅱ)反应生成稳定的红色配合物,其最大吸收波长为503nm,表观摩尔吸光系数为3.0×10^5L·mil^-1·cm^-1,汞含量在0~3.0×10^-6mlo·L^-1范围内服从比耳定律,该方法应用于合成样和废水中  相似文献   

11.
对水镁石、水菱镁石和斜方云石资源及其加工和应用进行了评述。包括上述资源的发展历史、化学组成和物性参数、资源储量和矿石品位、生产加工以及在不同领域(如镁质阻燃剂、中和剂、重金属离子脱除剂、镁肥、饲料添加剂等)的应用,并对它们的发展前景进行了展望。  相似文献   

12.
13.
14.
15.
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes.  相似文献   

16.
The rapidly growing chemistry of the cations, radicals, and anions based on the group 14 elements heavier than carbon (Si, Ge, Sn, and Pb) is one of the most important organometallic fields. Recent developments in this research area moved such species from the class of short-lived reactive intermediates to the class of easily accessible, isolable, and fully characterizable compounds. In this Account, we deal with the major accomplishments in the field of the stable representatives of "heavy" cations, radicals, and anions.  相似文献   

17.
In this Account, we recount on our studies of 1'-hydroxy-2'-acetonaphthone (HAN, a proton transfer prototype molecule) in gas, solutions, and nanocavities. The internal H-bond photoreaction in HAN leads to a keto type structure, and following its formation, an internal twisting motion gives birth to keto rotamers. Theory, temperature, and solvent effects on its photodynamics show the involvement of efficient radiationless processes in both keto structures. When HAN is caged in a cyclodextrin nanocavity, the spectroscopy, photodynamics, and issues of twisting motion are strongly affected and could be tuned: a behavior relevant to those of many chemical and biological systems.  相似文献   

18.
19.
Plant protein isolates (wheat gluten, soy, and pea protein) were treated in a thermoplastic extrusion process, yielding protein based bioplastic material. The application of glycerol as plasticizer in amounts of 50–67% of total mass and high temperatures above 140°C led to smooth and homogeneous extrudates. Viscosity measurements of the protein melt under extrusion conditions confirmed the thermoplastic behavior, obeying the power law with power law indices of 0.31‐0.4. Chemical changes in the material were qualitatively shown by amino acid analysis and fluorescence measurement. High moisture sensitivity and low mechanical stability of the extrudates, as determined by solubility, water vapor permeability, sorption isotherms, and tensile strength, can be partially ascribed to the high glycerol content. The application of pure protein bioplastics for technical purposes, e.g., as packing material, is discussed on basis of the presented data considering stability, appearance, and long time storage. POLYM. ENG. SCI., 55:1912–1919, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
This study describes the preparation of blends between an amorphous polymer (PVC) and a crystalline polymer (PEO), with a third polymeric part that presents electronic conduction capacity (PEDOT‐PSS). Binary (PEO/PVC, PEO/PEDOT‐PSS, PVC/PEDOT‐PSS) and ternary (PVC/PEO/PEDOT‐PSS) blends were prepared by changing the concentrations of the constituents and were analyzed by electronic conductivity, Raman spatial resolution, infrared spectroscopies, and thermogravimetric analysis. The Raman and FTIR analyses showed the incorporation of PEDOT‐PSS within the blends. The higher conductivity presented by the ternary blend was 8.6 × 10?6 Scm?1, composed of 24% of PVC, 16% of PEO, and 60% of PEDOT‐PSS. For binary blends the conductivity was proportional to the PEDOT‐PSS content. The thermal stability could be observed through the TG curves of the blends that presented an increase of 19 K in the weight loss temperature at the 10% level when compared to the pure components. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1710–1715, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号