首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a 2.5-3.125-Gb/s quad transceiver with second-order analog delay-locked loop (DLL)-based clock and data recovery (CDR) circuits. A phase-locked loop (PLL) is shared between receive (RX) and transmit (TX) chains. On each RX channel, an amplifier with user-programmable input equalization precedes the CDR. Retimed data then goes to an 1:8/1:10 deserializer. On the TX side, parallel data is serialized into a high-speed bitstream with an 8:1/10:1 multiplexer. The serial data is introduced off-chip through a high-speed CML buffer having single-tap pre-emphasis. Proposed DLL-based CDR can tolerate large frequency offsets with no jitter tolerance degradation due to its second-order PLL-like nature. Also, this study introduces an improved charge-pump and an improved phase-interpolator. Fabricated in a 0.15-/spl mu/m CMOS process, the 1.9-mm/sup 2/ transceiver front-end operates from a single 1.2-V supply and consumes 65-mW/channel of which 32 mW is due to the CDR. CDR jitter generation and high-frequency jitter tolerance are 5.9 ps-rms and 0.5 UI, respectively, for 3.125 Gb/s, 2/sup 23/-1 PRBS input data with 800-ppm frequency offset.  相似文献   

2.
This paper describes a technique for stabilizing the binary phase detector (PD) gain under various jitter conditions. A dead zone in the phase detector estimates the magnitude of high-frequency data jitter, and the resulting jitter information is used to control the charge-pump current. An alternating edge-sampling (AES) PD reduces hardware overhead by removing possible redundancies in previous dead-zone implementations. A series sense amplifier driven by a single-phase clock helps high-speed data sampling with increased data evaluation time. A dual path voltage-controlled oscillator incorporating dual-loop architecture enables wide-range operation of clock/data recovery circuits with low jitter. Fabricated in a 0.18-/spl mu/m CMOS process, a test transceiver operates from 2.5 to 11.5 Gb/s with a bit-error rate of less than 10/sup -12/ while consuming 540 mW from a 1.8-V supply.  相似文献   

3.
A 5-Gb/s/pin transceiver for DDR memory interface is proposed with a crosstalk suppression scheme. The proposed transceiver implements a staggered memory bus topology and a glitch canceller to suppress crosstalk-induced distortions in a memory channel. The transceiver is implemented using 0.18 $mu$m CMOS process and operates at 5 Gb/s. The results demonstrate widened eye diagram and lower bit error rate. The eye width and height of the proposed scheme increases 28.3% and 11.1% compared to the conventional memory transceiver, respectively. The peak-to-peak jitter of output data is 52.82 ps.   相似文献   

4.
In this article, a 3.2?Gb/s serial link transceiver, that can be implemented in 0.35???m CMOS technology is presented. In this transceiver a new multi-level pulse-width-amplitude modulation technique is used. The symbol rate is reduced, while the minimum pulse width (PW) is increased considerably, using the proposed modulation. The PW is larger than the conventional NRZ data format, with PW of Tb, so the ISI will be improved. The multiphase output of a three stage ring oscillator VCO in the PLL is used to modulate and to demodulate the signal. A new charge pump circuit is also introduced to decrease the mismatch between up and down paths. The peak to peak jitter of recovered clock is 21?ps at 800?MHz. The recovered data has the peak to peak jitter of 51?ps. The transmitter and receiver power consumption is 220 and 35?mW, respectively.  相似文献   

5.
This paper describes the design and implementation of a quad high-speed transceiver cell fabricated in 0.13-/spl mu/m CMOS technology. The clocking circuit of the cell employs a dual-loop architecture with a high-bandwidth core phase-locked loop (PLL) and low-bandwidth digitally controlled interpolators. To achieve low jitter while maintaining low power consumption, the dual-loop PLL uses two on-chip linear regulators of different bandwidths, one for the core and the other for the interpolator loop. The prototype chip operates from 400 Mb/s to 4 Gb/s with a bit error rate of <10/sup -14/. The quad cell consumes 390 mW at 2.5 Gb/s (95 mW/link) under typical operating conditions with a 400-mV output swing driving double terminated links.  相似文献   

6.
This work presents a quad-channel serial-link transceiver providing a maximum full duplex raw data rate of 12.5Gb/s for a single 10-Gbit eXtended Attachment Unit Interface (XAUI) in a standard 0.18-/spl mu/m CMOS technology. To achieve low bit-error rate (BER) and high-speed operation, a mixed-mode least-mean-square (LMS) adaptive equalizer and a low-jitter delay-immune clock data recovery (CDR) circuit are used. The transceiver achieves BER lower than <4.5/spl times/10/sup -15/ while its transmitted data and recovered clock have a low jitter of 46 and 64 ps in peak-to-peak, respectively. The chip consumes 178 mW per each channel at 3.125-Gb/s/ch full duplex (TX/RX simultaneous) data rate from 1.8-V power supply.  相似文献   

7.
We describe a CMOS multichannel transceiver that transmits and receives 10 Gb/s per channel over balanced copper media. The transceiver consists of two identical 10-Gb/s modules. Each module operates off a single 1.2-V supply and has a single 5-GHz phase-locked loop to supply a reference clock to two transmitter (Tx) channels and two receiver (Rx) channels. To track the input-signal phase, the Rx channel has a clock recovery unit (CRU), which uses a phase-interpolator-based timing generator and digital loop filter. The CRU can adjust the recovered clock phase with a resolution of 1.56 ps. Two sets of two-channel transceiver units were fabricated in 0.11-/spl mu/m CMOS on a single test chip. The transceiver unit size was 1.6 mm /spl times/ 2.6 mm. The Rx sensitivity was 120-mVp-p differential with a 70-ps phase margin for a common-mode voltage ranging from 0.6 to 1.0 V. The evaluated jitter tolerance curve met the OC-192 specification.  相似文献   

8.
This paper describes a low-power synchronous pulsed signaling scheme on a fully AC coupled multidrop bus for board-level chip-to-chip communications. The proposed differential pulsed signaling transceiver achieves a data rate of 1 Gb/s/pair over a 10-cm FR4 printed circuit board, which dissipates only 2.9 mW (2.9 pJ/bit) for the driver and channel termination and 2.7 mW for the receiver pre-amplifier at 500 MHz. The fully AC coupled multipoint bus topology with high signal integrity is proposed that minimizes the effect of inter-symbol interference (ISI) and achieves a 3 dB corner frequency of 3.2 GHz for an 8-drop PCB trace. The prototype transceiver chip is implemented in a 0.10-/spl mu/m 1.8-V CMOS DRAM technology and packaged in a WBGA. It occupies an active area of 330/spl times/85 /spl mu/m/sup 2/.  相似文献   

9.
设计了一个采用0.18μm1.8V/3.3V CMOS工艺制造的千兆比特数据率LVDS I/O接口电路。发送器电路采用内部参考电流源和片上匹配电阻,使工艺偏差、温度变化对输出信号幅度的影响减小50%;接收器电路采用一种改进的结构,通过检测输入共模电平,自适应调整预放大器偏置电压,保证跨导Gm在LVDS标准[1]要求的共模范围内恒定,因此芯片在接收端引入的抖动最小。芯片面积0.175mm2,3.3V电源电压下功耗为33mW,测试表明此接口传输速率达到1Gb/s。  相似文献   

10.
Here, we present a low-power fully integrated 10-Gb/s transceiver in 0.13-/spl mu/m CMOS. This transceiver comprises full transmit and receive functions, including 1:16 multiplex and demultiplex functions, high-sensitivity limiting amplifier, on-chip 10-GHz clock synthesizer, clock-data recovery, 10-GHz data and clock drivers, and an SFI-4 compliant 16-bit LVDS interface. The transceiver exceeds all SONET/SDH (OC-192/STM-64) jitter requirements with significant margin: receiver high-frequency jitter tolerance exceeds 0.3 UI/sub pp/ and transmitter jitter generation is 30 mUI/sub pp/. All functionality and specifications (core and I/O) are achieved with power dissipation of less than 1 W.  相似文献   

11.
This paper presents a 10-Gb/s clock and data recovery (CDR) circuit for use in multichannel applications. The module aligns the phase of a plesiochronous system clock to the incoming data by use of phase interpolation. Thus, coupling between voltage-controlled oscillators (VCOs) in adjacent channels can be avoided. The controller for the phase interpolator is realized with analog circuitry to overcome the speed and phase resolution limitations of digital implementations. Fabricated in a 0.11-/spl mu/m CMOS technology the module has a size of 0.25/spl times/1.4 mm/sup 2/. The power consumption is 220 mW from a supply voltage of 1.5 V. The CDR exceeds the SDH/SONET jitter tolerance specifications with a pseudo random bit sequence of length 2/sup 23/-1 and a bit-error rate threshold of 10/sup -12/. The re-timed and demultiplexed data has an rms jitter of 3.2 ps at a data rate of 2.7 Gb/s.  相似文献   

12.
A hybrid CDR is presented that embeds a 5 blind-oversampling CDR within a conventional phase-tracking CDR. This hybrid CDR has a jitter tolerance that is the product of the individual jitter tolerances. In this implementation, the jitter tolerance of a phase-tracking CDR alone is increased by a factor of 32 at frequencies below its loop filter's bandwidth, while maintaining the high-frequency jitter tolerance of a 5x blind-oversampling CDR. Measured data from a 0.11 mum CMOS test chip at 2.4 Gb/s confirm a 200 UI peak-to-peak jitter tolerance for a 200 kHz jitter. The test chip operates from 1.9 Gb/s to 3.5 Gb/s with a BER less than 10-11, consuming 115 mW at 2.4 Gb/s.  相似文献   

13.
设计了一个应用于SFI-5接口的2.5Gb/s/ch数据恢复电路.应用一个延迟锁相环,将数据的眼图中心调整为与参考时钟的上升沿对准,因而同步了并行恢复数据,并降低了误码率.采用TSMC标准的0.18μm CMOS工艺制作了一个单通道的2.5Gb/s/ch数据恢复电路,其面积为0.46mm2.输入231-1伪随机序列,恢复出2.5Gb/s数据的均方抖动为3.3ps.在误码率为10-12的条件下,电路的灵敏度小于20mV.  相似文献   

14.
采用TSMC公司标准的0.18μm CMOS工艺,设计并实现了一个全集成的2.5Gb/s时钟数据恢复电路.时钟恢复由一个锁相环实现.通过使用一个动态的鉴频鉴相器,优化了相位噪声性能.恢复出2.5GHz时钟信号的均方抖动为2.4ps,单边带相位噪声在10kHz频偏处为-111dBc/Hz.恢复出2.5Gb/s数据的均方抖动为3.3ps.芯片的功耗仅为120mW.  相似文献   

15.
A 4:1 multiplexer (MUX) IC for 40 Gb/s and above operations in optical fiber link systems has been developed. The ICs are based on 122-GHz-f/sub T/ 0.2-/spl mu/m self-aligned selective-epitaxial-growth SiGe HBT technology. To reduce output jitter caused by clock duty distortion, a master-slave delayed flip-flop (MS-DFF) with full-rate clock for data retiming is used at the final stage of the MUX IC. In the timing design of the critical circuit for full-rate clocking, robust timing design that has a wide timing margin between data and clock at the MS-DFF was achieved. Measurements using on-wafer probes showed that the MUX attained 54-Gb/s operation with an output voltage-swing of 400 mVpp. The output rms jitter generated by the MUX was 0.91 ps and tr/tf (10%-90%) was 11.4/11.3 ps at a data rate of 50 Gb/s. Power consumption of the IC was 2.95 W at a power supply of -4.8 V. Error-free operation (<10/sup -12/) in back-to-back configuration of the MUX and a 1:4 DEMUX IC module at a data rate of 45 Gb/s was confirmed. We therefore concluded that the MUX IC can be applied for transmitter functions in optical-fiber-link systems at a data rate of 40 Gb/s and higher for forward error correction.  相似文献   

16.
A 0.622-8-Gb/s clock and data recovery (CDR) circuit using injection locking for jitter suppression and phase interpolation in high-bandwidth system-on-chip solutions is described. A slave injection locked oscillator (SILO) is locked to a tracking aperture-multiplying DLL (TA-MDLL) via a coarse phase selection multiplexer (MUX). For the fine timing vernier, an interpolator DAC controls the injection strength of the MUX output into the SILO. This 1.2-V 0.13-/spl mu/m CMOS CDR consumes 33 mW at 8Gb/s. Die area including voltage regulator is 0.08 mm/sup 2/. Recovered clock jitter is 49 ps pk-pk at a 200-ppm bit-rate offset.  相似文献   

17.
A fully integrated 40-Gb/s transceiver fabricated in a 0.13-$mu$m CMOS technology is presented. The receiver operates at a 20-GHz clock performing half-rate clock and data recovery. Despite the low ${rm f}_{rm T}$ of 70 GHz, the input sampler achieves 10-mV sensitivity using pulsed latches and inductive-peaking techniques. In order to minimize the feedback latency in the bang-bang controlled CDR loop, the proportional control is directly applied to the VCO, bypassing the charge pump and the loop filter. In addition, the phase detection logic operates at 20 GHz, eliminating the need for the deserializers for the early/late timing signals. The four clock phases for the half-rate CDR are generated by a quadrature LC-VCO with microstrip resonators. A linear equalizer that tunes the resistive loading of an inductively-peaked CML buffer can improve the eye opening by 20% while operating at 39 Gb/s. The prototype transceiver occupies 3.4$, times ,$2.9 mm$^{2}$ with power dissipation of 3.6 W from a 1.45-V supply. With the equalizer on, the transmit jitter of the 39-Gb/s 2$^{15}-1$ PRBS data is 1.85 ${rm ps}_{rm rms}$ over a WB-PBGA package, an 8-mm PCB trace, an on-board 2.4-mm connector, and a 1 m-long 2.4-mm coaxial cable. The recovered divided-by-16 clock jitter is 1.77 ${rm ps}_{rm rms}$ and the measured BER of the transceiver is less than $10^{- 14}$ .   相似文献   

18.
A GaAs IC that performs clock recovery and data retiming functions in 2.5-Gb/s fiber-optic communication systems is presented. Rather than using surface acoustic wave (SAW) filter technology, the IC employs a frequency- and phase-lock loop (FPLL) to recover a stable clock from pseudo-random non-return-to-zero (NRZ) data. The IC is mounted on a 1-in×1-in ceramic substrate along with a companion Si bipolar chip that contains a loop filter and acquisition circuitry. At the synchronous optical network (SONET) OC-48 rate of 2.488 Gb/s, the circuit meets requirements for jitter tolerance, jitter transfer, and jitter generation. The data input ambiguity is 25 mV while the recovered clock has less than 2° rms edge jitter. The circuit functions up to 4 Gb/s with a 40-mV input ambiguity and 2° RMS clock jitter. Total current consumption from a single 5.2-V supply is 250 mA  相似文献   

19.
An integrated 10 Gb/s clock and data recovery (CDR) circuit is fabricated using SiGe technology, It consists of a linear-type phase-locked loop (PLL) based on a single-edge version of the Hogge phase detector, a LC-tank voltage-controlled oscillator (VCO) and a tri-state charge pump. A PLL equivalent model and design method to meet SONET jitter requirements are presented. The CDR was tested at 9.529 GB/s in full operation and up to 13.25 Gb/s in data recovery mode. Sensitivity is 14 mVpp at a bit error rate (BER)=10-9 . The measured recovered clock jitter is less than 1 ps RMS. The IC dissipates 1.5 W with a -5 V power supply  相似文献   

20.
We report here on the design, fabrication, and high-speed performance of a parallel optical transceiver based on a single CMOS amplifier chip incorporating 16 transmitter and 16 receiver channels. The optical interfaces to the chip are provided by 16-channel photodiode (PD) and VCSEL arrays that are directly flip-chip soldered to the CMOS IC. The substrate emitting/illuminated VCSEL/PD arrays operate at 985 nm and include integrated lenses. The complete transceivers are low-cost, low-profile, highly integrated assemblies that are compatible with conventional chip packaging technology such as direct flip-chip soldering to organic circuit boards. In addition, the packaging approach, dense hybrid integration, readily scales to higher channel counts, supporting future massively parallel optical data buses. All transmitter and receiver channels operate at speeds up to 15 Gb/s for an aggregate bidirectional data rate of 240 Gb/s. Interchannel crosstalk was extensively characterized and the dominant source was found to be between receiver channels, with a maximum sensitivity penalty of 1 dB measured at 10 Gb/s for a victim channel completely surrounded by active aggressor channels. The transceiver measures 3.25times5.25 mm and consumes 2.15 W of power with all channels fully operational. The per-bit power consumption is as low as 9 mW/Gb/s, and this is the first single-chip optical transceiver capable of channel rates in excess of 10 Gb/s. The area efficiency of 14 Gb/s/mm2 per link is the highest ever reported for any parallel optical transmitter, receiver, or transceiver reported to-date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号