首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The developing neurons have been reported to be extremely susceptible to toxicity of NMDA during a restricted developmental period. Pontosubicular neuronal necrosis is a typical type of perinatal human brain lesion and often coexists with other forms of cerebral hypoxic and ischemic injuries. To determine whether functional changes of NMDA receptors related to the susceptibility to NMDA toxicity are involved in developing neurons in the pontine nucleus, we have examined the lesion produced by in vivo direct injection of NMDA into the pontine nucleus of rats at postnatal days 1-30, recorded NMDA-induced whole-cell currents from neurons in the pontine nucleus in the developing rat brainstem slices, and performed in situ hybridization for NMDA receptor subunit mRNAs in the pontine nucleus. The susceptibility to NMDA neurotoxicity peaked near postnatal day 15, and the NMDA-induced currents showed prominent reduction of the voltage-dependent block by Mg2+ near postnatal day 15. The pontine nucleus near postnatal day 15 showed distinct expression of the NMDA receptor subunit NR2C mRNA. These results suggest that the susceptibility to NMDA neurotoxicity that is enhanced in the rat pontine nucleus near postnatal day 15 is mediated by the NMDA receptor channels that are relatively insensitive to Mg2+ and that the reduction in the sensitivity of NMDA receptors to Mg2+ correlates with the expression of the NR2C. We present the possibility that functional changes in the NMDA receptor channels play a crucial role in the occurrence of developmentally specific neuronal injury.  相似文献   

2.
We studied the effects of activation of the metabotropic glutamate receptors on intrinsic currents of magnocellular n urons of the supraoptic nucleus (SON) with whole cell patch-clamp and conventional intracellular recordings in coronal slices (400 micron) of the rat hypothalamus. Trans-(+/-)-1-amino-1,3-cyclopentane dicarboxylic acid (trans-ACPD, 10-100 microM), a broad-spectrum metabotropic glutamate receptor agonist, evoked an inward current (18.7 +/- 3.45 pA) or a slow depolarization (7.35 +/- 4.73 mV) and a 10-30% decrease in whole cell conductance in approximately 50% of the magnocellular neurons recorded at resting membrane potential. The decrease in conductance and the inward current were caused largely by the attenuation of a resting potassium conductance because they were reduced by the replacement of intracellular potassium with an equimolar concentration of cesium or by the addition of potassium channel blockers to the extracellular medium. In some cells, trans-ACPD still elicited a small inward current after blockade of potassium currents, which was abolished by the calcium channel blocker, CdCl2. Trans-ACPD also reduced voltage-gated and Ca2+-activated K+ currents in these cells. Trans-ACPD reduced the transient outward current (IA) by 20-70% and/or the IA-mediated delay to spike generation in approximately 60% of magnocellular neurons tested. The cells that showed a reduction of IA generally also showed a 20-60% reduction in a voltage-gated, sustained outward current. Finally, trans-ACPD attenuated the Ca2+-dependent outward current responsible for the afterhyperpolarization (IAHP) in approximately 60% of cells tested. This often revealed an underlying inward current thought to be responsible for the depolarizing afterpotential seen in some magnocellular neurons. (RS)-3,5-dihydroxyphenylglycine, a group I receptor-selective agonist, mimicked the effects of trans-ACPD on the resting and voltage-gated K+ currents. (RS)-alpha-methyl-4-carboxyphenylglycine, a group I/II metabotropic glutamate receptor antagonist, blocked these effects. A group II receptor agonist, 2S,1'S,2'S-2carboxycyclopropylglycine and a group III receptor agonist, (+)-2-amino-4-phosphonobutyric acid, had no effect on the resting or voltage-gated K+ currents, indicating that the reduction of K+ currents was mediated by group I receptors. About 80% of the SON cells that were labeled immunohistochemically for vasopressin responded to metabotropic glutamate receptor activation, whereas only 33% of labeled oxytocin cells responded, suggesting that metabotropic receptors are expressed preferentially in vasopressinergic neurons. These data indicate that activation of the group I metabotropic glutamate receptors leads to an increase in the postsynaptic excitability of magnocellular neurons by blocking resting K+ currents as well as by reducing voltage-gated and Ca2+-activated K+ currents.  相似文献   

3.
We have identified and visualized the vasopressin (VP) receptors expressed by hypothalamic magnocellular neurons in supraoptic and paraventricular nuclei. To do this, we used RT-PCR on total RNA extracts from supraoptic nuclei or on single freshly dissociated supraoptic neurons, and in situ hybridization on frontal sections of hypothalamus of Wistar rats. The RT-PCR on supraoptic RNA extracts revealed that mainly V1a, but also V1b, subtypes of VP receptors are expressed from birth to adulthood. No V2 receptor messenger RNA (mRNA) was detected. Furthermore, the single-cell RT-nested PCR indicated that the V1a receptor mRNA is present in vasopressinergic magnocellular neurons. In light of these results, in situ hybridization was performed to visualize the V1a and V1b receptor mRNAs in supraoptic and paraventricular nuclei. Simultaneously, we coupled this approach to: 1) in situ hybridization detection of oxytocin or VP mRNAs; or 2) immunocytochemistry to detect the neuropeptides. This provided a way of identifying the neurons expressing perceptible amounts of V1a or V1b receptor mRNAs as vasopressinergic neurons. Here, we suggest that the autocontrol exerted specifically by VP on vasopressinergic neurons is mediated through, at least, V1a and V1b subtype receptors.  相似文献   

4.
The ability of the constitutively active fragment of protein kinase C (PKM) to modulate N-methyl-D-aspartate (NMDA)-activated currents in cultured mouse hippocampal neurons and acutely isolated CA1 hippocampal neurons from postnatal rats was studied using patch-clamp techniques. The responses of two heterodimeric combinations of recombinant NMDA receptors (NR1a/NR2A and NR1a/NR2B) expressed in human embryonic kidney 293 cells were also examined. Intracellular applications of PKM potentiated NMDA-evoked currents in cultured and isolated CA1 hippocampal neurons. This potentiation was observed in the absence or presence of extracellular Ca2+ and was prevented by the coapplication of the inhibitory peptide protein kinase inhibitor(19-36). Furthermore, the PKM-induced potentiation was not a consequence of a reduction in the sensitivity of the currents to voltage-dependent blockade by extracellular Mg2+. We also found different sensitivities of the responses of recombinant NMDA receptors to the intracellular application of PKM. Some potentiation was observed with the NR1a/NR2A subunits, but none was observed with the NR1a/NR2B combination. Applications of PKM to inside-out patches taken from cultured neurons increased the probability of channel opening without changing single-channel current amplitudes or channel open times. Thus, the activation of protein kinase C is associated with potentiation of NMDA receptor function in hippocampal neurons largely through an increase in the probability of channel opening.  相似文献   

5.
The potency of Pb2+ inhibition of glutamate-activated currents mediated by N-methyl-D-aspartate (NMDA) receptors was dependent on the subunits composing the receptors when functionally expressed in Xenopus laevis oocytes. Pb2+ reduced the amplitudes of glutamate-activated currents and shifted the agonist EC50 values of NMDA receptors consisting of different subunit compositions. The IC50 values for Pb2+ ranged from 1.52 to 8.19 microM, with a rank order of potency of NR1b-2A > NR1b-2C > NR1b-2D > NR1b-2AC. For NR1b-2AC NMDA receptors, the IC50 value was dependent on the agonist concentration; at saturating agonist concentrations (300 microM), the IC50 value was 8.19 microM, whereas at 3 microM glutamate, the IC50 value was 3.39 microM. Pb2+ was a noncompetitive inhibitor of NR1b-2A, NR1b-2C and NR1b-2D NMDA receptors. At low concentrations (<1 microM) Pb2+ potentiated NR1b-2AC NMDA receptors. These data provide further evidence to support the hypothesis that the actions of Pb2+ on NMDA receptors are determined by the receptor subunit composition.  相似文献   

6.
Previous work with recombinant receptors has shown that the identity of the NMDA NR2 subunit influences receptor affinity for both glutamate and glycine. We have investigated the developmental change in NMDA receptor affinity for both glutamate and glycine in acutely dissociated parietal cortex neurons of the rat, together with the expression during ontogeny of NR2A and NR2B mRNA and protein. Whereas there is little change in NMDA receptor glutamate affinity with age, a population of NMDA receptors emerges in 14- and 28-d-old animals with a markedly reduced affinity for glycine (mKD = approximately 800 nM) and a reduced sensitivity to the NR2B subunit-selective NMDA antagonist ifenprodil. These changes are paralleled by a developmental increase in the expression of NR2A. Thus, in mature animals a population of NMDA receptors appears with a lower affinity for glycine that might not be saturated under normal physiological conditions. Ifenprodil (10 microM) inhibits virtually all of the NMDA receptor-evoked current in very young neurons that contain a single population of receptors exhibiting a high affinity for glycine (mKD = approximately 20 nM). In older neurons, which contain NMDA receptors with both high and low affinities for glycine, ifenprodil (10 microM) inhibits both the high-affinity population and a significant proportion of the low-affinity component, thus revealing three pharmacologically distinct populations of NMDA receptors in single neurons. Moreover, these observations suggest that ifenprodil might bind with high affinity to NMDA receptors containing both NR2A and NR2B subunits as well as those containing only NR2B.  相似文献   

7.
The maturation of retinogeniculate excitatory transmission and intrathalamic inhibition was studied in slices of the dorsal LGN obtained from ferrets during the first 2 postnatal months. Response to optic tract stimulation at neonatal ages consisted of slow EPSPs lasting several hundred milliseconds. Application of the NMDA receptor antagonist D-(-)-2-amino-5-phosphonovaleric acid (D-APV) during the first 2 postnatal weeks resulted in EPSPs that were reduced in peak amplitude and dramatically curtailed in duration, indicating that NMDA receptors participate strongly in retinogeniculate transmission at the immature synapse. Gradually, EPSPs became shorter in duration such that after the second postnatal week, the retinogeniculate EPSPs were only a few milliseconds in duration. At this late stage of development responses were remarkably less affected by application of D-APV. These changes in contribution of NMDA receptors to retinogeniculate transmission were found to be due to the development of strong IPSPs, the result of gradual maturation of activation of GABAergic inhibition. Indeed, application of bicuculline methiodide to block GABAA receptor-mediated IPSPs strongly enhanced the NMDA component of the EPSPs in more mature cells. The voltage dependence and kinetics of NMDA-induced excitatory postsynaptic currents (NMDA EPSCs) were characterized by voltage-clamp recordings after blocking AMPA/kainate receptors with 6-cyano-7-nitroquinoxaline-2,3-dione and GABAA receptors wit' bicuculline methiodide. The voltage dependence of the NMDA EPSCs remained unaltered with age. During the first postnatal month the kinetic properties of the NMDA EPSCs also remained unaltered, but a reduction in EPSC duration was observed within the following weeks, well after the critical period of anatomical reorganization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
N-Methyl-D-aspartate receptors are thought to be involved in synaptic signaling within the hypothalamo-neurohypophysial system, but the extent and nature of their involvement has not been determined. In this study, in the rat, we evaluated the effect of hyperosmotic stimulation on the N-methyl-D-aspartate receptor subunit, NR1, which confers function to N-methyl-D-aspartate receptor heteromers. Co-localization of immunoreactivity for NR1 and vasopressin- or oxytocin-associated neurophysin in magnocellular neurons of the supraoptic and paraventricular hypothalamic nuclei was accomplished using double-label immunohistochemistry. Our results show that vasopressin- and oxytocin-neurophysin-positive populations contained detectable levels of NR1 labeling. Using NR1 labeling as a measure of N-methyl-D-aspartate receptor density, we examined the effect of dehydration in these nuclei. Using computer-assisted densitometry, we found significantly greater NR1 labeling densities in the magnocellular regions of both the supraoptic and paraventricular nuclei of saline-treated rats than of control rats. This increase was not due to methodological factors, since no changes in NR1 labeling density were found in a nearby nucleus, the nucleus reuniens. Western blot analysis showed similar selective increases in NR1 labeling in homogenates from the supraoptic nucleus, paraventricular nucleus and in some cases from the anterior hypothalamic area. In both immunohistochemical and western blotting experiments we did not observe a dehydration-induced increase in NR1 in other brain areas examined. Our results showing an up-regulation of NR1-containing N-methyl-D-aspartate receptors during dehydration suggest that these receptors are involved in the regulation of body water and may represent an adaptive physiological response following activation of the hypothalamo-neurohypophysial axis. In addition, these results suggest that the functional expression of N-methyl-D-aspartate receptors is dynamic and may be modified according to the physiological state of the animal.  相似文献   

9.
The glutamatergic transmission system plays a key role in afferent and efferent pathways involved in micturition. By in situ hybridization combined with retrograde Fast Blue labeling, expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor (GluR-A to -D) and N-methyl-D-aspartate (NMDA) receptor (NR1 and NR2A-D) subunit mRNAs were examined in visceromotor and somatomotor neurons of the rat lumbosacral spinal cord. Parasympathetic preganglionic neurons (PGNs) in the intermediolateral nucleus highly expressed GluR-A and GluR-B subunit mRNAs, with very low levels for GluR-C and GluR-D subunits. As for the NMDA receptor, PGNs were associated with abundant signals for NR1 subunit mRNA, but without any NR2 subunit mRNAs. On the other hand, somatomotor neurons in the ventral horn (dorsolateral nucleus) express all four AMPA receptor subunit mRNAs, showing relatively abundant expressions of GluR-C and GluR-D subunit mRNA compared with PGNs. In addition to high levels of NR1 subunit mRNA, dorsolateral nucleus neurons moderately expressed NR2A and NR2B subunit mRNAs. These results suggest that molecular organization of both AMPA and NMDA receptor channels are distinct between PGNs and dorsolateral nucleus neurons. Considering that native NMDA receptors are heteromeric channels composed of NR1 and NR2 subunits, it seems likely that dorsolateral nucleus neurons, not PGNs, are provided with functional NMDA receptors, which could induce activity-dependent changes in synaptic transmission in the efferent pathway for the lower urinary tract.  相似文献   

10.
NMDA receptors play important roles in learning and memory and in sculpting neural connections during development. After the period of peak cortical plasticity, NMDA receptor-mediated EPSCs (NMDAR EPSCs) decrease in duration. A likely mechanism for this change in NMDA receptor properties is the molecular alteration of NMDA receptor structure by regulation of NMDA receptor subunit gene expression. The four modulatory NMDAR2A-D (NR2A-D) NMDA receptor subunits are known to alter NMDA receptor properties, and the expression of these subunits is regulated developmentally. It is unclear, however, how the four NR2 subunits are expressed in individual neurons and which NR2 subunits are important to the regulation of NMDA receptor properties during development in vivo. Analysis of NR2 subunit gene expression in single characterized neurons of postnatal neocortex revealed that cells expressing NR2A subunit mRNA had faster NMDAR EPSCs than cells not expressing this subunit, regardless of postnatal age. Expression of NR2A subunit mRNA in cortical neurons at even low levels seemed sufficient to alter the NMDA receptor time course. The proportion of cells expressing NR2A and displaying fast NMDAR EPSCs increased developmentally, thus providing a molecular basis for the developmental change in mean NMDAR EPSC duration.  相似文献   

11.
The effects of benzyl-polyamines were studied at recombinant N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus laevis oocytes. A number of mono-, di- and tri-benzyl polyamines, having benzyl substitutions on the terminal or central amino groups, inhibited responses of NR1/NR2 receptors in oocytes voltage-clamped at -70 mV. Among the most potent compounds was N1,N4, N8-tri-benzyl-spermidine (TB-3-4), which had an IC50 value of 0.2 microM. TB-3-4 was approximately 40-fold more potent at NR1/NR2A and NR1/NR2B receptors than at NR1/NR2C or NR1/NR2D receptors. Block by TB-3-4 was strongly voltage dependent. Using voltage ramps analyzed by the Woodhull model of voltage-dependent channel block, TB-3-4 was found to have a Kd(0) value of 5 microM and a zdelta value of 1.41 at NR1/NR2B channels, whereas the affinity of binding [Kd(0) = 250 microM] but not the degree of voltage-dependence (zdelta = 1.43) was much lower at NR1/NR2D channels. At a concentration of 10 microM, TB-3-4 had no effect on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors expressed from the GluR1 subunit, indicating that TB-3-4 is a selective NMDA antagonist. TB-3-4 did not permeate wild-type NMDA channels but could easily permeate channels containing an N616G mutation in the NR1 subunit. This mutation is presumed to increase the size of the narrowest constriction of the NMDA channel, thus allowing passage of TB-3-4. Benzyl-polyamines such as TB-3-4 represent a structurally novel class of NMDA receptor channel blockers.  相似文献   

12.
Ibogaine is an hallucinogenic indole alkaloid claimed to have anti-addictive properties. Although its mechanism of action is unknown, binding studies have indicated that the drug may interact with N-methyl-D-aspartate (NMDA) receptors. We further investigated the nature of the interaction between ibogaine and NMDA receptors in voltage clamp and binding studies, and sought to confirm that the drug has NMDA receptor blocking activity in vivo. In whole-cell recordings from cultured rat hippocampal neurons, ibogaine caused a slow, concentration-dependent block of NMDA-induced currents (IC50, 3.1 microM at -60 mV). In contrast, ibogaine failed to affect either kainate- or gamma-aminobutyric acid-evoked currents. The blockade of NMDA currents was use- and voltage-dependent, and the long lasting ibogaine block could be occluded by co-application of Mg2+. Ibogaine also inhibited equilibrium [3H]dizocilpine binding to NMDA receptors in rat forebrain membranes (IC50, 3.2 microM). We conclude that ibogaine is an open channel NMDA receptor antagonist. Administration of ibogaine to mice resulted in complete protection in the maximal electroshock test (ED50, 31 mg/kg, i.p.) and partial protection against NMDA-induced lethality, confirming that ibogaine can block NMDA receptors in vivo.  相似文献   

13.
5-Chloro-7-trifluoromethyl-1,4-dihydro-2,3-quinoxalinedione (ACEA-1011) has analgesic properties in animal models of tonic pain. To investigate the mechanisms underlying this effect we used electrical recording techniques to characterize the in vitro pharmacology of ACEA-1011 at mammalian glutamate receptors. Two preparations were used: Xenopus oocytes expressing rat brain receptors and cultured rat cortical neurons. Results showed that ACEA-1011 is a competitive antagonist at NMDA receptor glycine sites. Apparent antagonist affinities (Kb values) were 0.4 to 0.8 microM in oocytes and approximately 0.6 microM in neurons. IC50 values for ACEA-1011 against four binary subunit combinations of cloned rat NMDA receptors (NR1A/NR2A, 2B, 2C or 2D) ranged from 0.4 to 8 microM (1 microM glycine). The 20-fold variation in sensitivity was due to a combination of subunit-dependent differences in glycine and antagonist affinities; EC50 values for glycine ranged between 0.08 to 0.8 microM and Kb values for ACEA-1011 between 0.2 to 0.8 microM. In addition, ACEA-1011 inhibited AMPA-preferring non-NMDA receptors by competitive antagonism at glutamate binding sites. Kb values were 4 to 9 microM in oocytes and 9 to 10 microM in neurons. The ED50 for ACEA-1011 in a mouse maximum electroshock-induced seizure model was approximately 12 mg/kg i.v.. Our results indicate that ACEA-1011 is a systemically active broad selectivity ionotropic glutamate receptor antagonist.  相似文献   

14.
The interaction of Ro 25-6981 with N-methyl-D-aspartate (NMDA) receptors was characterized by a variety of different tests in vitro. Ro 25-6981 inhibited 3H-MK-801 binding to rat forebrain membranes in a biphasic manner with IC50 values of 0.003 microM and 149 microM for high- (about 60%) and low-affinity sites, respectively. NMDA receptor subtypes expressed in Xenopus oocytes were blocked with IC50 values of 0.009 microM and 52 microM for the subunit combinations NR1C & NR2B and NR1C & NR2A, respectively, which indicated a >5000-fold selectivity. Like ifenprodil, Ro 25-6981 blocked NMDA receptor subtypes in an activity-dependent manner. Ro 25-6981 protected cultured cortical neurons against glutamate toxicity (16 h exposure to 300 microM glutamate) and combined oxygen and glucose deprivation (60 min followed by 20 h recovery) with IC50 values of 0.4 microM and 0.04 microM, respectively. Ro 25-6981 was more potent than ifenprodil in all of these tests. It showed no protection against kainate toxicity (exposure to 500 microM for 20 h) and only weak activity in blocking Na+ and Ca++ channels, activated by exposure of cortical neurons to veratridine (10 microM) and potassium (50 mM), respectively. These findings demonstrate that Ro 25-6981 is a highly selective, activity-dependent blocker of NMDA receptors that contain the NR2B subunit.  相似文献   

15.
Morphological and electrophysiological characteristics of magnocellular neurons from basal forebrain nuclei of postnatal rats (11-14 days old) were examined in dissociated cell culture. Neurons were maintained in culture for periods of 5-27 days, and 95% of magnocellular (>23 micron diam) neurons stained positive with acetylcholinesterase histochemistry. With the use of phase contrast microscopy, four morphological subtypes of magnocellular neurons could be distinguished according to the shape of their soma and pattern of dendritic branching. Corresponding passive and active membrane properties were investigated with the use of whole cell configuration of the patch-clamp technique. Neurons of all cell types displayed a prominent (6-39 mV; 6.7-50 ms duration) spike afterdepolarization (ADP), which in some cells reached firing threshold. The ADP was voltage dependent, increasing in amplitude and decreasing in duration with membrane hyperpolarization with an apparent reversal potential of -59 +/- 2.3 (SE) mV. Elevating [Ca2+]o (2.5-5.0 mM) or prolonging spike repolarization with 10 mM tetraethylammonium (TEA) or 1 mM 4-aminopyridine (4-AP), potentiated the ADP while it was inhibited by reducing [Ca2+]o (2.5-1 mM) or superfusion with Cd2+ (100 microM). The ADP was selectively inhibited by amiloride (0.1-0.3 mM or Ni2+ 10 microM) but unaffected by nifedipine (3 microM), omega-conotoxin GVIA (100 nM) or omega-agatoxin IVA (200 nM), indicating that Ca2+ entry was through T-type Ca2+ channels. After inhibition of the ADP with amiloride (300 microM), depolarization to less than -65 mV revealed a spike afterhyperpolarization (AHP) with both fast and slow components that could be inhibited by 4-AP (1 mM) and Cd2+ (100 microM), respectively. In all cell types, current-voltage relationships exhibited inward rectification at hyperpolarized potentials >/=EK (approximately -90 mV). Application of Cs+ (0.1-1 mM) or Ba2+ (1-10 microM) selectively inhibited inward rectification but had no effect on resting potential or cell excitability. At higher concentrations, Ba2+ (>10 microM) also inhibited an outward current tonically active at resting potential (VH -70 mV), which under current-clamp conditions resulted in small membrane depolarization (3-10 mV) and an increase in cell excitability. Depolarizing voltage commands from prepulse potential of -90 mV (VH -70 mV) in the presence of tetrodotoxin (0.5 microM) and Cd2+ (100 microM) to potentials between -40 and +40 mV cause voltage activation of both transient A-type and sustained delayed rectifier-type outward currents, which could be selectively inhibited by 4-AP (0.3-3 mM) and TEA (1-3 mM), respectively. These results show that, although acetylcholinesterase-positive magnocellular basal forebrain neurons exhibit considerable morphological heterogeneity, they have very similar and characteristic electrophysiological properties.  相似文献   

16.
NMDA receptors play key roles in synaptic plasticity and neuronal development, and may be involved in learning, memory, and compensation following injury. A polyclonal antibody that recognizes four of seven splice variants of NMDAR1 was made using a C-terminus peptide (30 amino acid residues). NMDAR1 is the major NMDA receptor subunit, found in most or all NMDA receptor complexes. On immunoblots, this antibody labeled a single major band migrating at M(r) = 120,000. The antibody did not cross-react with extracts from transfected cells expressing other glutamate receptor subunits, nor did it label non-neuronal tissues. Immunostained vibratome sections of rat tissue showed labeling in many neurons in most structures in the brain, as well as in the cervical spinal cord, dorsal root and vestibular ganglia, and in pineal and pituitary glands. Staining was moderate to dense in the olfactory bulb, neocortex, striatum, some thalamic and hypothalamic nuclei, the colliculi, and many reticular, sensory, and motor neurons of the brainstem and spinal cord. The densest stained cells included the pyramidal and hilar neurons of the CA3 region of the hippocampus, Purkinje cells of the cerebellum, supraoptic and magnocellular paraventricular neurons of the hypothalamus, inferior olive, red nucleus, lateral reticular nucleus, peripheral dorsal cochlear nucleus, and motor nuclei of the lower brainstem and spinal cord. Ultrastructural localization of immunostaining was examined in the hippocampus, cerebral cortex, and cerebellar cortex. The major staining was in postsynaptic densities apposed by unstained presynaptic terminals with round or mainly round vesicles, and in associated dendrites. The pattern of staining matched that of previous in situ hybridization but differed somewhat from that of binding studies, implying that multiple types of NMDA receptors exist. Comparison with previous studies of localization of other glutamate receptor types revealed that NMDAR1 may colocalize with these other types in many neurons throughout the nervous system.  相似文献   

17.
The present experiments were designed to examine dopamine (DA) modulation of whole cell currents mediated by activation of N-methyl-D-aspartate (NMDA) receptors in visualized neostriatal neurons in slices. First, we assessed the ability of DA, D1 and D2 receptor agonists to modulate membrane currents induced by activation of NMDA receptors. The results of these experiments demonstrated that DA potentiated NMDA-induced currents in medium-sized neostriatal neurons. Potentiation of NMDA currents occurred at three different holding potentials, although it was more pronounced at -30 mV. It was mediated by D1 receptors, because it was mimicked by D1 agonists and blocked by exposure to a D1 antagonist. Activation of D2 receptors produced inconsistent effects on NMDA-induced membrane currents. Either decreases, increases, or no effects on NMDA currents occurred. Second, we examined the contributions of intrinsic, voltage-dependent conductances to DA potentiation of NMDA currents. Blockade of K+ conductances did not prevent DA enhancement of NMDA currents. However, voltage-activated Ca2+ conductances provided a major contribution to DA modulation. The dihydropyridine L-type Ca2+ channel blockers, nifedipine, and methoxyverapamil (D-600), markedly reduced but did not totally eliminate the ability of DA to modulate NMDA currents. The D1 receptor agonist SKF 38393 also enhanced Ba2+ currents in neostriatal neurons. Together, these findings provide evidence for a complex interplay between DA, NMDA receptor activation and dihydropyridine-sensitive Ca2+ conductances in controlling responsiveness of neostriatal medium-sized neurons.  相似文献   

18.
In neurosecretory cells of the supraoptic nucleus (SON) of rats, pituitary adenylate cyclase activating polypeptide (PACAP) causes an increase in [Ca2+]i, and stimulates somatodendritic vasopressin (VP) release. In this report, to elucidate the ionic mechanism of the action of PACAP, membrane potentials and ionic currents were measured from SON neurones in slice preparations or from dissociated SON neurones. In the current clamp mode, PACAP depolarized membrane potentials of both phasic and non-phasic neurones and increased the firing rate. Moreover, simultaneous measurements of membrane potentials and [Ca2+]i revealed that the membrane depolarization correlated well with increases in [Ca2+]i. In the voltage-clamp mode, PACAP induced inward currents at a holding potential of -70 or -80 mV in a dose-dependent manner and the time course of the currents was similar to that of the PACAP-induced membrane depolarization. The averaged reversal potential of the PACAP-induced currents obtained from dissociated SON neurones was -33 mV, which was close to the reversal potential of non-selective cation currents in SON neurones. The currents were rapidly and reversibly inhibited by a cation-channel blocker, gadolinium. Analysis of synaptic inputs into SON neurones in slice preparations revealed that PACAP had little or no effects on the frequency of spontaneous excitatory and inhibitory postsynaptic currents. These results suggest that pituitary adenylate cyclase activating polypeptide (PACAP) activates PACAP receptors in the postsynaptic membrane of the supraoptic nucleus (SON) neurones, and that the activation of PACAP receptors leads to opening of non-selective cation channels, depolarization of the membrane potential, and increase in the firing rate in SON neurones. Such mechanisms may account for the PACAP-induced increase in [Ca2+]i and vasopressin (VP) release observed in SON neurones.  相似文献   

19.
Recent studies of N-methyl-D-aspartate (NMDA) receptors have led to the suggestion that there are two distinct classes of native NMDA receptors, identifiable from their single-channel conductance properties. 'High-conductance' openings arise from NR2A- or NR2B-containing receptors, and 'low-conductance' openings arise from NR2C- or NR2D-containing receptors. In addition, the low-conductance channels show reduced sensitivity to block by Mg2+. The readily identified cell types and simple architecture of the cerebellum make it an ideal model system in which to determine the contribution of specific subunits to functional NMDA receptors. Furthermore, mRNA for all of these four NR2 subunits are represented in this brain region. We have examined NMDA channels in Purkinje cells, deep cerebellar nuclei (DCN) neurons and Golgi cells. First we find that NR2D-containing NMDA receptors give rise to low-conductance openings in cell-attached recordings from Purkinje cells. The characteristic conductance of these events cannot, therefore, be ascribed to patch excision. Second, patches from some DCN neurons exhibit mixed populations of high- and low-conductance openings. Third, Golgi cells also exhibit a mixed population of high- and low-conductance NMDA receptor openings. The features of these low-conductance openings are consistent with the presence of NR2D-containing NMDA receptors, as suggested by in situ hybridization data. On the other hand the existence of high-conductance channels, with properties typical of NR2B-containing receptors, was not expected. Our results provide new evidence about the subunit composition of NMDA receptors in identified cerebellar cells, and suggest that examination of single-channel properties is a potentially powerful approach for determining the possible subunit composition of native NMDA receptors.  相似文献   

20.
The responses of acutely dissociated medial preoptic neurons to application of GABA, and glycine were studied using the perforated-patch whole-cell recording technique under voltage-clamp conditions. GABA, at a concentration of 1 mM, evoked outward currents in all cells (n = 33) when studied at potentials positive to -80 mV. The I-V relation was roughly linear. The currents evoked by GABA were partially blocked by 25-75 microM picrotoxin and were also partially or completely blocked by 100-200 microM bicuculline. Glycine, at a concentration of 1 mM, did also evoke outward currents in all cells (n = 12) when studied at potentials positive to -75 mV. The I-V relation was roughly linear. The currents evoked by glycine were largely blocked by 1 microM strychnine. In conclusion, the present work demonstrates that neurons from the medial preoptic nucleus of rat directly respond to the inhibitory transmitters GABA and glycine with currents that can be attributed to GABAA receptors and glycine receptors respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号