首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张亚楠  刘妮  由龙涛  柳秀婷 《化工进展》2015,34(4):903-910,920
表面活性剂作为一种分散剂,广泛应用于新型换热工质——纳米流体中.研究纳米流体的各种特性对于其在实际的能量传递系统中的应用有重要意义.重点总结和比较了水基纳米流体中表面活性剂对体系的稳定性、热导率和黏度影响的实验研究,阐述了纳米流体中表面活性剂的作用机理,对目前的研究中存在的问题进行了分析.最后,提出了有助于完善表面活性剂对水基纳米流体特性影响的4点建议:混合表面活性剂的组合及其配比对纳米流体的稳定性、热导率和黏度的影响;使用分子动力模拟等方法来研究表面活性剂对纳米流体特性的影响;表面活性剂影响下的纳米流体的稳定性和热导率及黏度之间的关系;纳米流体中众多不确定因素的量化分析.  相似文献   

2.
量子流体氦黏度的分子动力学模拟   总被引:1,自引:1,他引:0  
陈煜  陈硕  巨永林  鲁雪生  顾安忠 《化工学报》2007,58(12):3036-3040
采用分子动力学模拟了量子流体在微通道内的剪切应力与速度分布。利用经典流体力学理论中剪切应力和速度分布之间的关系式,得到了量子流体氦在不同温度和密度条件下的动力粘度。模拟针对LJ模型和带有量子效应校正的QFH模型展开,分别采用大小不等的两套分子体系,获得了氦在超临界区和液体区内若干状态点的动力粘度。采用量子效应校正后的模拟过程将会占用大量的计算资源,因此一般的个人计算机不可能在短时间内实现其大量状态点的计算。  相似文献   

3.
王宝和  侯兆泷  王维 《河南化工》2020,37(2):13-16,25
采用非平衡分子动力学模拟方法,研究单个含有固体金属纳米颗粒的悬浮纳米液滴的蒸发特性。模拟结果表明,含有金属纳米颗粒的悬浮球形纳米液滴,在蒸发过程中基本保持球形不变;模拟温度越高,金属纳米颗粒的质量分数越大,纳米流体液滴的球形度越小。当蒸发过程开始时,纳米流体液滴的蒸发速率很大,而且模拟温度越高,蒸发速率越大,随后,蒸发速率急剧下降;随着蒸发过程的进一步进行,蒸发速率缓慢下降。金属纳米颗粒的种类和质量分数,对悬浮纳米流体液滴的蒸发速率影响不大。  相似文献   

4.
以Couette流动为原型,在壁面Pt原子、液相Ar原子和纳米Cu颗粒相互作用的基础上,考虑与温度相关壁面Pt原子的热振动,建立了热壁作用下超薄纳米流体剪切流动的分子动力学模型。研究发现,壁面Pt原子的振动对纳米流体系统中各颗粒运动的影响显著,Ar原子和纳米Cu颗粒沿膜厚方向呈不均匀分布。由于膜厚方向Ar原子的非均匀分布及纳米Cu颗粒的影响,液膜各层的切向速度在膜厚方向上呈非线性变化,且存在明显的边界速度滑移。壁面剪切速度增大,边界速度滑移率增大,系统温度对速度滑移亦有影响。获得了纳米流体的剪切黏度,其随纳米颗粒体积分数的增大而增大。  相似文献   

5.
陈巨辉  韩坤  王帅  李铭坤  陈纪元  马明 《化工学报》2019,70(6):2147-2152
相较于水、乙二醇等常规流体,纳米流体出色的传热效果使其成为近十年来研究的热点之一。利用一种反扰动非平衡分子动力学方法对纳米流体的导热增强机理进行了模拟研究。在基液Ar 中加入 Cu 纳米颗粒后, 纳米流体的热通量和热导率均发生了不同程度的改变,纳米颗粒体积分数的变化,在一定程度上改变了纳米流体内部的能量传递过程。进一步分析了纳米流体热导率强化的微观作用机理,发现纳米颗粒的加入,使得纳米流体的微观结构具有了类似晶体的微观结构特性,在颗粒尺寸较小的情况下,流体内部受温度梯度作用效应明显。  相似文献   

6.
南怡伶  孔宪  李继鹏  卢滇楠 《化工学报》2017,68(5):1786-1793
采用非平衡分子动力学模拟(non-equilibrium molecular dynamics simulation)方法研究了不同间距纳米狭缝之间水的流动行为。研究了纳米狭缝间距、壁面性质和外部压力对水流动速度径向分布、有效黏度、壁面速度和滑移长度的影响,讨论了Navier-Stoke(N-S)方程的适用性。研究结果表明,N-S方程仅适用于3 nm以上的孔道;狭缝尺寸的增加和施加压力的增加均会使得管内流速增加,而造成表观黏度降低以及滑移长度增加。壁面亲水性的增加仅使得滑移长度降低,表观黏度并没有发生较大变化。  相似文献   

7.
石月  杨宾 《现代化工》2023,(5):109-114
采用“两步法”将ZnO纳米颗粒及分散剂阿拉伯树胶添加到基液中,制备质量分数为0.4%~2.292%的氧化锌纳米流体,同时对质量分数不同的纳米流体的稳定性及其在不同温度(15~55℃)下的导热性、黏度进行研究。结果表明,在质量分数为0.4%~1.552%下,氧化锌纳米流体稳定性更好。质量分数为0.4%~1.173%之间导热性相对基液有所提高,且质量分数为0.788%时导热效果最好。与基液相比,所制备的纳米流体的黏度都有所增加,并且质量分数越大黏度也相应越大。  相似文献   

8.
分子动力学模拟研究流体微观结构和扩散性质   总被引:3,自引:0,他引:3  
通过分子动力学模拟得到了纯水、超临界水以及电解质溶液的微观结构 ,从而对固液相变、离子水化、离子配位数等做出了微观解释与证明。通过分子动力学模拟了有机物在超临界二氧化碳中的扩散系数 ,在几十个研究体系中取得了与实验值较吻合的结果 ,并以此为基础 ,提出了一个普遍化的扩散系数预测方程。通过这些工作 ,既从微观上阐述了现象的本质 ,又在宏观上得到了可方便的应用于工程设计的结果 ,表明了分子模拟作为一种先进的科学研究手段将得到越来越广泛的应用  相似文献   

9.
采用分子动力学模拟的方法建立了纳米二氧化锆增强丁腈橡胶(NBR)复合材料的分子模型,对比分析了外部填充、原位填充以及原位填充且经过偶联化处理三种形态的二氧化锆对NBR力学性能的增强效果,从原子层面探讨了定子橡胶力学性能的内在增强机制。结果表明,相比于纯NBR,三种形态二氧化锆的引入均显著改善了NBR的力学性能。原位填充纳米二氧化锆的表面羟基与NBR形成氢键型偶极相互作用,表面活性偶联剂双-(3-三乙氧基硅烷丙基)四硫化物的加入进一步提供了与橡胶基质之间的化学桥接,从而大大提升了NBR基质的力学性能。与纯NBR体系相比,原位填充且经过偶联化处理的二氧化锆增强NBR的力学性能表现最佳,复合体系的杨氏模量、体积模量和剪切模量均提升得最多。通过界面结合能、非键合能、均方位移和扩散系数的计算,验证了纳米二氧化锆的添加改善了定子橡胶力学性能的结论。  相似文献   

10.
采用L—J模型,对氩流体汽液界面特性进行了平衡分子动力学模拟,得到了密度、界面张力等参数的分布规律。模拟结果表明,随着氩流体体系温度的提高,液相主体密度和界面张力逐渐减小,汽相主体密度和界面厚度逐渐增大;随着截断半径的增大,界面张力逐渐增大,汽相主体密度及界面厚度稍有减小,液相主体密度稍有增大;随着模拟分子数的增加,界...  相似文献   

11.
纳米流体热导率的测量   总被引:23,自引:4,他引:19       下载免费PDF全文
李强  宣益民 《化工学报》2003,54(1):42-46
运用瞬态热线法测定了不同种类、不同体积份额配比的纳米流体的热导率,分析了纳米粒子属性、份额、尺度等因素对纳米流体热导率的影响.实验结果表明,在液体中添加纳米粒子显著增加了液体的热导率.通过对实验结果进行分析,提出了计算纳米流体热导率的关联式.  相似文献   

12.
李群  王宝和 《河南化工》2013,(15):31-35
采用分子动力学模拟技术(MD),利用L-J势能模型,研究了非受限空间和受限空间中,氩流体的扩散行为。考察了非受限空间中截断半径、粒子数、温度和受限空间中能量系数、狭缝宽度及温度等对氩流体自扩散系数的影响。模拟结果表明,在非受限空间中,氩流体的自扩散系数随温度升高而逐渐增大,其随温度的变化规律符合Arrhenius方程。在受限空间中,随着能量系数的增大和狭缝宽度的减小,氩流体自扩散系数逐渐减小;温度对氩流体自扩散系数的影响规律与非受限空间的类似。在相同温度下,受限空间氩流体的自扩散系数比非受限空间的要低。  相似文献   

13.
金铭  胡定华  李强  范德松 《化工学报》2019,70(11):4199-4206
纳米流体液滴蒸发现象在电子设备冷却、喷墨打印以及医学检测等领域都有广泛应用。为了研究水基Al2O3纳米流体液滴的蒸发特性,建立了纳米流体液滴蒸发的二维瞬态模型,考虑了纳米颗粒输运行为以及液滴内部流动的影响,并采用任意拉格朗日-欧拉法(ALE)捕捉气液运动界面。基于所建立的模型,分析了水基Al2O3纳米流体液滴内部Marangoni流、纳米颗粒初始浓度以及基板温度对纳米流体液滴蒸发特性的影响规律。结果表明,液滴内部Marangoni流会影响气液界面温度分布和蒸发速率。由于液滴内部纳米颗粒浓度分布和气液界面温度发生变化,纳米流体液滴的蒸发速率随着纳米颗粒初始浓度和基板温度升高而增加。  相似文献   

14.
随着科学技术的进步,能源短缺问题日益严峻,传统的换热工质已经不能满足工业的需要,纳米流体作为一种新兴的换热工质受到越来越多的关注。而混合纳米流体作为单纳米流体的延伸,具有更全面更优越的性能。但是各颗粒之间的相互作用导致混合纳米流体的传热机制更加复杂,为了在实际中更好地应用混合纳米流体,所以研究影响混合纳米流体热导率的因素是必要的。介绍了混合纳米流体的制备方法以及影响混合纳米流体热导率的相关因素。  相似文献   

15.
实验研究了3种乙二醇基纳米流体(Al2O3-EG、ZnO-EG、CuO-EG)在不同质量分数(0.5%/3.0%/5.0%/7.0%)下的相对黏度随温度的变化规律,实验所用乙二醇基纳米流体采用两步法配制获得。结果表明:在30~60℃温度范围内乙二醇基纳米流体的相对黏度同温度之间并无较强的函数关系(单调递增或递减);但在质量分数较高时,3种乙二醇基纳米流体的相对黏度随温度的变化会出现波动,且以非球形颗粒的ZnO乙二醇基纳米流体的波动最为显著;乙二醇基纳米流体的相对黏度均随纳米颗粒体积分数的增大而增大,其中CuO乙二醇基纳米流体相对黏度的增长速度最快,Al2O3乙二醇基纳米流体的增长速度最慢。最后比较分析了文献中相对黏度预测公式与本文实验数据的相符程度。  相似文献   

16.
黏弹性流体基纳米流体(viscoelastic fluid based nanofluid,VFBN)是一种具有湍流减阻和对流换热相对强化特性的新型换热工质,其湍流减阻机理与流变学特性关系密切。通过对以2.5×10-3、5×10-3、1×10-2三种质量分数的十六烷基三甲基氯化铵/水杨酸钠水溶液为基液,粒子体积分数为0.1%、0.25%、0.5%、1.0%的铜纳米流体的剪切黏度、零剪切黏度以及松弛时间的测量,实验结果表明VFBN有明显的剪切稀变特性,同时纳米粒子的添加增大了基液的零剪切黏度,并导致基液黏弹性增强。以Giesekus本构模型为理论基础,利用实验参数得到了描述VFBN剪切黏度的实验关联式。  相似文献   

17.
阳倦成  徐鸿鹏  李凤臣 《化工学报》2014,65(Z1):199-205
黏弹性流体基纳米流体(viscoelastic fluid based nanofluid,VFBN)是一种具有湍流减阻和对流换热相对强化特性的新型换热工质,其湍流减阻机理与流变学特性关系密切。通过对以2.5×10-3、5×10-3、1×10-2三种质量分数的十六烷基三甲基氯化铵/水杨酸钠水溶液为基液,粒子体积分数为0.1%、0.25%、0.5%、1.0%的铜纳米流体的剪切黏度、零剪切黏度以及松弛时间的测量,实验结果表明VFBN有明显的剪切稀变特性,同时纳米粒子的添加增大了基液的零剪切黏度,并导致基液黏弹性增强。以Giesekus本构模型为理论基础,利用实验参数得到了描述VFBN剪切黏度的实验关联式。  相似文献   

18.
采用分子动力学模拟技术,研究水纳米液滴在粗糙壁面上的润湿性,探讨壁面形貌、柱高和相面积分数对接触状态和接触角的影响。模拟结果表明,在粗糙度因子相同的情况下,水纳米液滴在栏栅形、方柱矩阵形及凹坑矩阵形三种粗糙壁面上的接触角相差不大。对于疏水性壁面,当柱高较小时,水纳米液滴的接触状态为Wenzel模式;当柱高较大时,接触状态为Cassie模式,随着柱高的增加,接触角逐渐增大。在不同的相面积分数下,接触状态始终处于Cassie模式;随着相面积分数的增加,接触角逐渐减小。对于中性壁面,水纳米液滴的接触角随柱高变化不大,接触状态均为Wenzel模式。当相面积分数较小时,接触状态为Wenzel模式;当相面积分数较大时,接触状态为Cassie模式,接触角基本不变。对于亲水性壁面,当相面积分数较小时,水纳米液滴的接触状态为Wenzel模式;当相面积分数较大时,接触状态为Cassie模式。在不同的柱高下,接触状态均为Wenzel模式。  相似文献   

19.
周登青  吴慧英 《化工学报》2014,65(6):2021-2026
实验研究了3种乙二醇基纳米流体(Al2O3-EG、ZnO-EG、CuO-EG)在不同质量分数(0.5%/3.0%/5.0%/7.0%)下的相对黏度随温度的变化规律,实验所用乙二醇基纳米流体采用两步法配制获得。结果表明:在30~60℃温度范围内乙二醇基纳米流体的相对黏度同温度之间并无较强的函数关系(单调递增或递减);但在质量分数较高时,3种乙二醇基纳米流体的相对黏度随温度的变化会出现波动,且以非球形颗粒的ZnO乙二醇基纳米流体的波动最为显著;乙二醇基纳米流体的相对黏度均随纳米颗粒体积分数的增大而增大,其中CuO乙二醇基纳米流体相对黏度的增长速度最快,Al2O3乙二醇基纳米流体的增长速度最慢。最后比较分析了文献中相对黏度预测公式与本文实验数据的相符程度。  相似文献   

20.
翟玉玲  王江  李龙  马明琰  姚沛滔 《化工进展》2019,38(11):4865-4872
采用两步法制备体积分数为0.5%和1.0%的Al2O3/水纳米流体,研究20nm和50nm Al2O3纳米粒子的混合比对热导率和黏度的影响,并用c μ/c λ和Mo数来评价其综合传热效果,判断是否适用于实际传热过程。实验结果表明,有效热导率和相对黏度受团聚体尺寸影响较大。在体积分数为1.0%和混合比为50∶50时有效热导率的增幅最大,而混合比为(40∶60)~(60∶40)之间,相对黏度最低。这是因为此时团聚体的尺寸小,相应地沉淀速度慢,说明其分散性较好,形成局部粒子富集区,即“50nm固体粒子-20nm固体粒子-液体分子”的界面层,能产生高导热渗透通道及低热阻区,使热导率增大。在层流时,该纳米流体适用于实际传热过程中的范围为:体积分数0.5%和1.0%,混合比40∶60和50∶50,温度25~50℃。在紊流时,体积分数为0.5%和温度高于40℃时,混合比范围为(40∶60)~(60∶40)才适合使用此纳米流体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号