首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a continuing effort to validate the radiometric scales assigned to integrating sphere sources used in the calibration of Earth Observing System (EOS) instruments, a radiometric measurement comparison was held in May 1998 at Raytheon/Santa Barbara Remote Sensing (SBRS). This comparison was conducted in support of the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instruments. The radiometric scale assigned to the Spherical Integrating Source (SIS100) by SBRS was validated through a comparison with radiometric measurements made by a number of stable, well-characterized transfer radiometers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration’s Goddard Space Flight Center (NASA’s GSFC), and the University of Arizona Optical Sciences Center (UA). The measured radiances from the radiometers differed by ±3 % in the visible to near infrared when compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements. In general, the transfer radiometers gave higher values than the SBRS calibration in the near infrared and lower values in the blue. The measurements of the radiometers differed by ±4 % from 800 nm to 1800 nm compared to the SBRS calibration of the sphere, and the overall agreement was within the combined uncertainties of the individual measurements for wavelengths less than 2200 nm. The results of the radiometric measurement comparison presented here supplement the results of previous measurement comparisons on the integrating sphere sources used to calibrate the Multi-angle Imaging SpectroRadiometer (MISR) at NASA’s Jet Propulsion Laboratory (JPL), Pasadena, CA and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at NEC Corporation, Yokohama, Japan.  相似文献   

2.
Detectors have historically been calibrated for spectral power responsivity at the National Institute of Standards and Technology by using a lamp-monochromator system to tune the wavelength of the excitation source. Silicon detectors can be calibrated in the visible spectral region with combined standard uncertainties at the 0.1% level. However, uncertainties increase dramatically when measuring an instrument's spectral irradiance or radiance responsivity. We describe what we believe to be a new laser-based facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) that was developed to calibrate instruments directly in irradiance or radiance mode with uncertainties approaching or exceeding those available for spectral power responsivity calibrations. In SIRCUS, the emission from high-power, tunable lasers is introduced into an integrating sphere using optical fibers, producing uniform, quasi-Lambertian, high-radiant-flux sources. Reference standard irradiance detectors, calibrated directly against national primary standards for spectral power responsivity and aperture area measurement, are used to determine the irradiance at a reference plane. Knowing the measurement geometry, the source radiance can be readily determined as well. The radiometric properties of the SIRCUS source coupled with state-of-the-art transfer standard radiometers whose responses are directly traceable to primary national radiometric scales result in typical combined standard uncertainties in irradiance and radiance responsivity calibrations of less than 0.1%. The details of the facility and its effect on primary national radiometric scales are discussed.  相似文献   

3.
As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by −2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS).  相似文献   

4.
Barnes RA  Zalewski EF 《Applied optics》2003,42(9):1648-1660
For instruments that carry onboard solar diffusers to orbit, such as the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), it is possible to convert the instrument's reflectance measurements to radiance measurements by knowledge of the solar irradiance. This process, which generally requires the application of a solar irradiance model, is described. The application of the irradiance model is separate from the measurements by the instrument and from the instrument's reflectance calibration. In addition, SeaWiFS was calibrated twice before launch for radiance response by use of radiance sources with calibrations traceable to the National Institute of Standards and Technology. With the inclusion of the at-launch diffuser-based radiance calibration, SeaWiFS has three possible radiance calibrations forthe start of on-orbit operations. The combination of these three into a single calibration requires changes of 4% or less for the current at-launch radiance calibration of the instrument. Finally, this process requires changes of 4% or less for the reflectance calibration coefficients to provide consistency among the radiance calibration, the reflectance calibration, and the solar irradiance.  相似文献   

5.
The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.  相似文献   

6.
A new facility for measuring irradiance in the UV was commissioned recently at the National Institute of Standards and Technology (NIST). The facility uses the calculable radiation from the Synchrotron Ultraviolet Radiation Facility as the primary standard. To measure the irradiance from a source under test, an integrating sphere spectrometer-detector system measures both the source under test and the synchrotron radiation sequentially, and the irradiance from the source under test can be determined. In particular, we discuss the calibration of deuterium lamps using this facility from 200 to 400 nm. This facility improves the current NIST UV irradiance scale to a relative measurement uncertainty of 1.2% (k=2).  相似文献   

7.
Integrating-sphere-input InGaAs radiometers (ISIR) have been developed at the National Institute of Standards and Technology (NIST) to extend the detector-based calibration of radiation thermometers from the Si range to the near-infrared (NIR). These near-infrared radiometers are used to determine the reference spectral irradiance responsivity scale based on the primary-standard cryogenic radiometer. The irradiance responsivity scale is then propagated to spectral radiance at the exit port of an integrating sphere. The near-infrared radiation thermometer (NIRT) is calibrated using this detector-based radiance scale. The first phase of this research work is reported here where the relative spectral radiance responsivity of the NIRT has been determined using a monochromator-based system. Thereafter, the relative spectral responsivity of the NIRT is converted into an absolute responsivity using the radiances from the Zn fixed point blackbody. Then, the NIRT is used to extend these calibrations for temperature measurements between 157 °C and 1000 °C. The NIRT has also been calibrated in this temperature range using the five, fixed point blackbodies of the ITS-90. The two different calibration approaches for temperature measurements are compared.  相似文献   

8.
Spectral irradiance calibrations often require that irradiance standard lamps be oriented differently than the normal calibration orientation used at the National Institute of Standards and Technology and at other standards laboratories. For example, in solar measurements the instruments are generally upward viewing, requiring horizontal working standards for minimization of irradiance calibration uncertainties. To develop a working standard for use in a solar ultraviolet intercomparison, NIST determined the irradiance of quartz-halogen lamps operating in the horizontal position, rather than in the customary vertical position. An experimental technique was developed which relied upon equivalent lamps with independent mounts for each orientation and a spectroradiometer with an integrating sphere whose entrance port could be rotated 90° to view either lamp position. The results presented here are limited to 1000 W quartz-halogen type lamps at ultraviolet wavelengths from 280 nm to 400 nm. Sources of uncertainty arose from the lamps, the spectroradiometer, and the lamp alignment, and increased the uncertainty in the irradiance of horizontal lamps by less than a factor of two from that of vertical NIST standard lamps. The irradiance of horizontal lamps was less than that of vertical lamps by approximately 6 % at long wavelengths (400 nm) to as much as 12 % at the shortest wavelengths (280 nm). Using the Wien radiation law, this corresponds to color temperature differences of 15.7 K and 21.3 K for lamps with clear and frosted envelopes, respectively.  相似文献   

9.
Using radiometry, thermodynamic temperatures can be determined by a variety of experimental techniques. Radiometers without imaging optics can be calibrated for spectral power or spectral irradiance responsivity, and radiometers with imaging optics can be calibrated for radiance responsivity. These separate approaches can have different uncertainty components with different uncertainty values. At NIST, thermodynamic radiation thermometry is performed using radiation thermometers calibrated for radiance responsivity using laser-irradiated integrating sphere sources (ISS). The radiance of the ISS is determined using Si-trap detectors whose spectral power responsivity is traceable to the electrical substitution cryogenic radiometer. The radiometric basis of the NIST approach is discussed. The uncertainty budget for the measurements as well as the characterizations to determine the component uncertainty values is listed.  相似文献   

10.
Recent developments for a new spectral irradiance scale realization at the National Institute of Standards and Technology have been targeted to reduce the present relative expanded uncertainties of 0.67 % to 4.34 % (coverage factor of k = 2 and thus a 2 standard deviation estimate) in the spectral irradiance scale to 0.17 % for the range from 350 nm to 1100 nm. To accomplish this goal, a suite of filter radiometers calibrated using NIST’s high accuracy cryogenic radiometer have been used to measure the temperature of a high-temperature black-body. A comparison of the filter radiometer calibrations with the spectral irradiance scale along with an evaluation of the black-body calibration technique have been performed. With the aid of a monochromator, the calibrated filter radiometers will then be utilized to calibrate primary and secondary spectral irradiance standard lamps at NIST.  相似文献   

11.
The paper describes the new experimental setup assembled at the PTB for the absolute spectral responsivity measurement of radiation thermometers. The concept of this setup is to measure the relative spectral responsivity of the radiation thermometer using the conventional monochromator-based spectral comparator facility also used for the calibration of filter radiometers. The absolute spectral responsivity is subsequently measured at one wavelength, supplied by the radiation of a diode laser, using the new setup. The radiation of the diode laser is guided with an optical fiber into an integrating sphere source that is equipped with an aperture of absolutely known area. The spectral radiance of this integrating sphere source is determined via the spectral irradiance measured by a trap detector with an absolutely calibrated spectral responsivity traceable to the primary detector standard of the PTB, the cryogenic radiometer. First results of the spectral responsivity calibration of the radiation thermometer LP3 are presented, and a provisional uncertainty budget of the absolute spectral responsivity is given.  相似文献   

12.
Laboratory measurements were performed to characterize the geometrical effects in the calibration of the NASA's cloud absorption radiometer (CAR). The measurements involved three integrating sphere sources (ISSs) operated at different light levels and experimental setups to determine radiance variability. The radiance gradients across the three ISS apertures were 0.2%-2.6% for different visible, near-infrared, and shortwave infrared illumination levels but <15% in the UV. Change in radiance with distance was determined to be 2%-20%, being highest in the UV. Radiance variability due to the edge effects was found to be significant; as much as 70% due to the sphere aperture and <10% due to the CAR telescope's secondary mirror.  相似文献   

13.
Versatile applications in radiometry and photometry require uniform light source systems with a highly Lambertian radiance/luminance output. Examples for this kind of requirements include different applications such as calibration of photometers and radiometers, testing of electronic imaging devices like CCDs or similar array detectors or the use as a homogenous light source in, for instance, gonioreflectometric measurements. At the Physikalisch-Technische Bundesanstalt (PTB) a homogenous sphere radiator consisting of a medium sized integrating sphere (ϕ = 150 mm) with an internal reflector in the equatorial plane was developed. In its first stage of development it was equipped with an internal 250 W quartz tungsten halogen lamp. This sphere radiator had a radiance homogeneity of 99.8% of the emitted radiation measured in the plane of the limiting aperture (ϕ = 40 mm) at the output of the device. In the latest design of the system the radiative output power could be increased by a factor of about 3 by the use of an internal 400 W quartz tungsten halogen lamp while nearly maintaining homogeneity.  相似文献   

14.
A methodology for using a calibrated filter radiometer to measure and monitor the spectral radiance of calibration sources is described. An example is presented using the NIST calibration sphere source that is used to support the NASA Earth Observing remote-sensing program.  相似文献   

15.
Independent methods for measuring the absolute spectral irradiance responsivity of detectors have been compared between the calibration facilities at two national metrology institutes, the Helsinki University of Technology (TKK), Finland, and the National Institute of Standards and Technology (NIST). The emphasis is on the comparison of two different techniques for generating a uniform irradiance at a reference plane using wavelength-tunable lasers. At TKK's Laser Scanning Facility (LSF) the irradiance is generated by raster scanning a single collimated laser beam, while at the NIST facility for Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources (SIRCUS), lasers are introduced into integrating spheres to generate a uniform irradiance at a reference plane. The laser-based irradiance responsivity results are compared to a traditional lamp-monochromator-based irradiance responsivity calibration obtained at the NIST Spectral Comparator Facility (SCF). A narrowband filter radiometer with a 24 nm bandwidth and an effective band-center wavelength of 801 nm was used as the artifact. The results of the comparison between the different facilities, reported for the first time in the near-infrared wavelength range, demonstrate agreement at the uncertainty level of less than 0.1%. This result has significant implications in radiation thermometry and in photometry as well as in radiometry.  相似文献   

16.
Zaid G  Park SN  Park S  Lee DH 《Applied optics》2010,49(35):6772-6783
We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40 mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550 nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k = 2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120 mW/cm(2).  相似文献   

17.
Ohno Y 《Applied optics》1994,33(13):2637-2647
A method is proposed for realizing the total flux scale of light sources by use of an integrating sphere with an opening to introduce a known amount of flux from a luminous intensity standard or a spectral irradiance standard lamp placed outside the sphere. Computer simulations were made on several models of an integrating sphere, designed to compare the total flux of a test lamp inside the sphere with the flux introduced from an external source. I describe the theory and algorithm of the simulation, present the results of the simulation for varying conditions of sphere geometry such as size and location of the baffles, internal source, and wall reflectance, and predict that one of the models has sufficient accuracy to calibrate lamps for total flux.  相似文献   

18.
Preflight calibration of space-based observation systems (SOBS) is carried out by means of standard sources with known spectral radiance. There are no difficulties in preflight calibration of SOBS within the visible spectral range. The main problem here lies in achieving sufficiently high uniformity of spectral radiance across the radiating aperture of a large-area source. Standard blackbody radiance sources with the temperature that is measured and with the calculated emissivity are used for calibration of SOBS in the infrared (IR) spectral range. The emissivity of sources having an aperture as large as 500 mm cannot be calculated accurately enough, and they have to be measured. It is quite challenging to conduct the measurements in a vacuum chamber simulating the low earth orbit environment in a broad temperature range. A spectral radiance calibration facility for preflight calibration of SOBS which is based on using a large-area blackbody with a diameter of 500 mm and an operational temperature range from \(-60~^{\circ }\mathrm{C}\) to \(150~^{\circ }\mathrm{C}\) is presented. The facility includes a gallium fixed-point blackbody, a variable temperature blackbody with a temperature range from \(-60\,^{\circ }\mathrm{C}\) to \(150\,^{\circ }\mathrm{C}\) , a reference liquid nitrogen-cooled blackbody located in the vacuum chamber, and a Fourier transform IR spectrometer (FT-IR) used as a comparator. Radiation from the different sources is fed, in sequence, into the comparator by means of a custom-made optomechanical system located in the vacuum chamber. Operation of the calibration facility is described. Characteristics and specifications of the sources are shown.  相似文献   

19.
A novel, spectrally tunable light-source utilizing light emitting diodes (LEDs) for radiometric, photometric, and colorimetric applications is described. The tunable source can simulate standard sources and can be used as a transfer source to propagate photometric and colorimetric scales from calibrated reference instruments to test artifacts with minimal increase in uncertainty. In this prototype source, 40 LEDs with 10 different spectral distributions were mounted onto an integrating sphere. A voltage-to-current control circuit was designed and implemented, enabling independent control of the current sent to each set of four LEDs. The LEDs have been characterized for stability and dependence on drive current. The prototype source demonstrates the feasibility of development of a spectrally tunable LED source using LEDs with up to 40 different spectral distributions. Simulations demonstrate that such a source would be able to approximate standard light-source distributions over the visible spectral range—from 380 nm to 780 nm—with deviations on the order of 2 %. The tunable LED source can also simulate spectral distributions of special sources such as discharge lamps and display monitors. With this tunable source, a test instrument can be rapidly calibrated against a variety of different source distributions tailored to the anticipated uses of the artifact. Target uncertainties for the calibration of test artifacts are less than 2 % in luminance and 0.002 in chromaticity for any source distribution.  相似文献   

20.
The normal spectral emissivity of niobium strip specimens was measured using a new pulse-heating reflectometric technique. The hemispherical spectral reflectivity of the surface of a strip tangent to an integrating sphere is determined by a high-speed lock-in technique. At the same time, the radiance temperature of the strip is measured by high-speed pyrometry from approximately 1000K to the melting point. Details of the measurement method and of the related calibration techniques are reported. Results of the normal spectral emissivity of niobium at 900 nm from room temperature to its melting point are presented, discussing differences related to the heating rate and to surface conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号