首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the question of how current is distributed within quantum Hall effect devices. Three types of flow patterns most often mentioned in the literature are considered. They are: (1) skipping orbits along the device periphery (which arise from elastic collisions off hard-walled potentials); (2) narrow conducting channels along the device sides (which are presumed to be generated from confining potentials); and (3) currents distributed throughout the device (which are assumed to arise from a combination of confining and charge-redistribution potentials). The major conclusions are that skipping orbits do not occur in quantum Hall effect devices, and that nearly all of the externally applied current is located within the device interior rather than along the device edges.  相似文献   

2.
Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance.  相似文献   

3.
We observe a spatially localized breakdown of the nearly dissipationless quantum Hall effect into a set of discrete dissipative states in wide, high-quality GaAs/AlGaAs samples. The phenomenon can be explained by an extension of the quasi-elastic inter-Landau level scattering model of Eaves and Sheard.  相似文献   

4.
基于砷化镓的量子霍尔电阻自然基准需要在约1.5K的温度条件下运行,存在成本高和操作复杂等诸多问题。随着石墨烯材料独特电性能的发现,因其可以在约4.2K的温度复现量子霍尔效应而成为制作量子霍尔电阻的理想材料。各国专家围绕石墨烯在电学计量领域的应用开展了大量的工作,取得了可喜的进展。对当前石墨烯在量子霍尔电阻中应用的进展和存在的问题进行了总结,并对未来的发展进行了展望。  相似文献   

5.
We present detailed measurements of the temperature dependence of the Hall and longitudinal resistances on a quantum Hall device [(GaAs(7)] which has been used as a resistance standard at NIST. We find a simple power law relationship between the change in Hall resistance and the longitudinal resistance as the temperature is varied between 1.4 K and 36 K. This power law holds over seven orders of magnitude change in the Hall resistance. We fit the temperature dependence above about 4 K to thermal activation, and extract the energy gap and the effective g-factor.  相似文献   

6.
Many ac quantized Hall resistance experiments have measured significant values of ac longitudinal resistances under temperature and magnetic field conditions in which the dc longitudinal resistance values were negligible. We investigate the effect of non-vanishing ac longitudinal resistances on measurements of the quantized Hall resistances by analyzing equivalent circuits of quantized Hall effect resistors. These circuits are based on ones reported previously for dc quantized Hall resistors, but use additional resistors to represent longitudinal resistances. For simplification, no capacitances or inductances are included in the circuits. The analysis is performed for many combinations of multi-series connections to quantum Hall effect devices. The exact algebraic solutions for the quantized Hall resistances under these conditions of finite ac longitudinal resistances provide corrections to the measured quantized Hall resistances, but these corrections do not account for the frequency dependences of the ac quantized Hall resistances reported in the literature.  相似文献   

7.
交流量子化霍尔效应及其应用   总被引:1,自引:0,他引:1  
利用量子化霍尔效应实现的直流电阻自然基准已经得到广泛应用,国际计量委员会给出了量子化霍尔电阻的国际推荐值作为各国统一电阻量值的依据。为了保持单位的一致性,交流阻抗的单位亦应溯源到量子化霍尔电阻,国际上因此开展了交流量子化霍尔电阻的研究。目前从交流量子化霍尔电阻传递出电容量值的不确定度已达到1~2×10-7,可以基本满足实际工作中交流阻抗单位准确度的需要。要进一步提高交流量子化霍尔电阻的准确度,则需要在一些基础性的研究方面作更为深入的工作。  相似文献   

8.
9.
When large currents are passed through a high-quality quantized Hall resistance device the voltage drop along the device is observed to assume discrete, quantized states if the voltage is plotted versus the magnetic field. These quantized dissipative voltage states are interpreted as occurring when electrons are excited to higher Landau levels and then return to the original Landau level. The quantization is found to be, in general, both a function of magnetic field and current. Consequently, it can be more difficult to verify and determine dissipative voltage quantization than previously suspected.  相似文献   

10.
We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.  相似文献   

11.
The potential and current distributions are calculated across the width of a quantum Hall effect sample for applied currents between 0 μA and 225 μA. For the first time, both a confining potential and a current-induced charge-redistribution potential are used. The confining potential has a parabolic shape, and the charge-redistribution potential is logarithmic. The solution for the sum of the two types of potentials is unique at each current, with no free parameters. For example, the charge-depletion width of the confining potential is determined from a localization experiment by Choi, Tsui, and Alavi, and the spatial extent of the conducting two-dimensional electron gas across the sample width is obtained from the maximum electric field deduced from a high-current breakdown experiment by Cage and Lavine, and from the quantum Hall voltage. The spatial extent has realistic cut-off values at the sample sides; e.g., no current flows within 55 magnetic lengths of the sides for currents less than 215 μA. The calculated potential distributions are in excellent agreement with contactless electro-optic effect laser beam measurements of Fontein et al.  相似文献   

12.
The quantum anomalous Hall (QAH) effect, which has been realized in magnetic topological insulators (TIs), is the key to applications of dissipationless quantum Hall edge states in electronic devices. However, investigations and utilizations of the QAH effect are limited by the ultralow temperatures needed to reach full quantization—usually below 100 mK in either Cr‐ or V‐doped (Bi,Sb)2Te3 of the two experimentally confirmed QAH materials. Here it is shown that by codoping Cr and V magnetic elements in (Bi,Sb)2Te3 TI, the temperature of the QAH effect can be significantly increased such that full quantization is achieved at 300 mK, and zero‐field Hall resistance of 0.97 h/e2 is observed at 1.5 K. A systematic transport study of the codoped (Bi,Sb)2Te3 films with varied Cr/V ratios reveals that magnetic codoping improves the homogeneity of ferromagnetism and modulates the surface band structure. This work demonstrates magnetic codoping to be an effective strategy for achieving high‐temperature QAH effect in TIs.  相似文献   

13.
14.
Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which the resulting exotic quantum states can be controlled. Here, an experimental observation is reported of the quantum anomalous Hall effect in a magnetically-doped topological insulator grown on the antiferromagnetic insulator Cr2O3. The exchange coupling between the two materials is investigated using field-cooling-dependent magnetometry and polarized neutron reflectometry. Both techniques reveal strong interfacial interaction between the antiferromagnetic order of the Cr2O3 and the magnetic topological insulator, manifested as an exchange bias when the sample is field-cooled under an out-of-plane magnetic field, and an exchange spring-like magnetic depth profile when the system is magnetized within the film plane. These results identify antiferromagnetic insulators as suitable candidates for the manipulation of magnetic and topological order in topological insulator films.  相似文献   

15.
The electrical and magnetic properties of GaSb:Mn layers deposited on (100)GaAs substrates from a laser plasma in vacuum have been studied. It is shown that the films deposited at 200–440 °C are mosaic single crystalline and epitaxial to the substrate, with p-type conduction. Manganese-doped layers had a hole concentration higher than 1×1019 cm−3 and fairly high values of mobility (up to 40 cm2/V s at 300 K). The layers grown at 200 °C exhibited an anomalous Hall effect up to approximately room temperature. On the contrary, a normal Hall effect was observed in the layers grown at 440 °C. Ferromagnetic resonance measurements have revealed the existence of ferromagnetism in the sample grown at 200 °C. The transition temperature is close to room temperature, in full agreement with the Hall data. In the sample grown at 440 °C, the formation of ferromagnetic clusters has tentatively been concluded.  相似文献   

16.
简要介绍了量子结构材料与器件中的基本概念,重点介绍了量子结构的定义和量子尺寸效应的能带裁剪工程.以Ⅱ-Ⅵ族化合物半导体为例,介绍了量子尺寸效应对于激子束缚能的影响.以此为基础,综述了Ⅱ-Ⅵ族化合物半导体量子阱、量子点等量子结构材料以及量子结构器件在光电探测、发光器件与太阳能电池领域的研究现状,并总结了Ⅱ-Ⅵ族化合物半导...  相似文献   

17.
为研究金属光电效应的量子理论,给出金属中一个电子的总哈密顿量,建立适合电子量子振动特性的算符代数理论,根据量子算符代数理论,得到金属中一个电子的总能量,由光电效应理论得到一个自由光子的静止质量和一个自由光子的能量表示。  相似文献   

18.
Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.  相似文献   

19.
20.
Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+xTe2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号