首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The electrochemical properties and crystal structure of LiMn1.5Ni0.5O4 treated with supersonic waves in an aqueous Ni-containing solution were investigated by performing charge-discharge tests, inductively coupled plasma (ICP) analysis, scanning electron microscopy (SEM), iodometry, X-ray diffraction (XRD), powder neutron diffraction and synchrotron powder XRD. The charge-discharge curve of LiMn1.5Ni0.5O4 versus Li/Li+ has plateaus at 4.1 and 4.7 V. The 4.1 V versus Li/Li+ plateau due to the oxidation of Mn3+/4+ was reduced by the supersonic treatment. During the charge-discharge cycling test at 25 °C, the supersonic treatment increased the discharge capacity of the 50th cycle. Rietveld analysis of the neutron diffraction patterns revealed that the Ni occupancy of the 4b site in LiMn1.5Mn0.5O4, which is mainly occupied by Ni, was increased by the supersonic treatment. This result suggests that Ni2+ is partially substituted for Mn3+/4+ during the supersonic treatment.  相似文献   

2.
A nanostructured spinel LiMn2O4 electrode material was prepared via a room-temperature solid-state grinding reaction route starting with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O) and citric acid (C6H8O7·H2O) raw materials, followed by calcination of the precursor at 500 °C. The material was characterized by X-ray diffraction (XRD) and transmission electron microscope techniques. The electrochemical performance of the LiMn2O4 electrodes in 2 M Li2SO4, 1 M LiNO3, 5 M LiNO3 and 9 M LiNO3 aqueous electrolytes was studied using cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. The LiMn2O4 electrode in 5 M LiNO3 electrolyte exhibited good electrochemical performance in terms of specific capacity, rate dischargeability and charge/discharge cyclability, as evidenced by the charge/discharge results.  相似文献   

3.
The structural changes of the composite cathode made by mixing spinel LiMn2O4 and layered LiNi1/3Co1/3Mn1/3O2 in 1:1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ∼5.2 V vs. Li/Li+, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the LiNi1/3Co1/3Mn1/3O2 component only. When the cell voltage reaches at ∼4.0 V vs. Li/Li+, lithium extraction from the spinel LiMn2O4 component starts and becomes the major contributor for the cell capacity due to the higher rate capability of LiMn2O4. When the voltage passed 4.3 V, the major structural changes are from the LiNi1/3Co1/3Mn1/3O2 component, while the LiMn2O4 component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel LiMn2O4 component, with much less changes in the layered LiNi1/3Co1/3Mn1/3O2 component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research.  相似文献   

4.
A porous spherical aggregation of Li4Mn5O12 nanorods with the particle size of 3 μm is prepared by oxidizing LiMn2O4 powder with (NH4)2S2O8 under hydrothermal conditions. The result displays that concentration of (NH4)2S2O8 plays a key role in forming the porous spherical aggregation and the optimal concentration of oxidant is found to be 1.5 mol L−1. The mechanism for the formation of the porous spherical aggregation is proposed. The electrochemical capacitance performance is tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge. The porous spherical aggregation exhibits a good electrochemical performance. It could deliver 375 F g−1 within potential range 0-1.4 V at a scan rate of 5 mV s−1 in 1 mol L−1 Li2SO4 and the value is cut down to less than 0.024 F g−1 per cycling period in 1000 cycles.  相似文献   

5.
Spinel-typed LiMn2O4 cathode active materials have been prepared for different microstructures by the melt-impregnation method using different forms of manganese. The effect of the starting materials on the microstructure and electrochemical properties of LiMn2O4 is investigated by X-ray diffraction, scanning electron microscopy, and electrochemical measurements. The powder prepared from nanostructured γ-MnOOH, with good crystallinity and a regular cubic spinel shape, provided an initial discharge capacity of 114 mAh g−1 with excellent rate and high capacity retention. These advantages render LiMn2O4 attractive for practical and large-scale applications in mobile equipment.  相似文献   

6.
A potential negative electrode material (mesoporous nano-Co3O4) is synthesized via a simple thermal decomposition of precursor Co(OH)2 hexagonal nanosheets in the air. The structure and morphology of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is found that the nano-Co3O4 is present in mesoporous hexagonal nanoparticles. The average size of holes is about 5-15 nm. The electrochemical performances of mesoporous nano-Co3O4 as the active starting negative electrode material for alkaline secondary battery are investigated by galvanostatic charge-discharge and cyclic voltammetry (CV) technique. The results demonstrate that the prepared mesoporous nano-Co3O4 electrode displays excellent electrochemical performance. The discharge capacity of the mesoporous nano-Co3O4 electrode can reach 436.5 mAh g−1 and retain about 351.5 mAh g−1 after 100 cycles at discharge current of 100 mA g−1. A properly electrochemical reaction mechanism of mesoporous nano-Co3O4 electrode is also constructed in detail.  相似文献   

7.
Manganese oxide with high tap density was prepared by decomposition of spherical manganese carbonate, and then LiMn2O4 cathode materials were synthesized by solid-state reaction between the manganese oxide and lithium carbonate. Structure and properties of the samples were determined by X-ray diffraction, Brunauer–Emmer–Teller surface area analysis, scanning electron microscope and electrochemical measurements. With increase of the decomposition temperature from 350 °C to 900 °C, the tap density of the manganese oxide rises from 0.91 g cm−3 to 2.06 g cm−3. Compared with the LiMn2O4 cathode made from chemical manganese dioxide or electrolytic manganese dioxide, the LiMn2O4 made from manganese oxide of this work has a larger tap density (2.53 g cm−3), and better electrochemical performances with an initial discharge capacity of 117 mAh g−1, a capacity retention of 93.5% at the 15th cycle and an irreversible capacity loss of 2.24% after storage at room temperature for 28 days.  相似文献   

8.
LiMn2O4 epitaxial thin films were synthesized on SrTiO3:Nb(1 1 1) and Al2O3(0 0 1) single crystal substrates by pulsed laser deposition (PLD) method and the electrochemical properties were discussed comparing with that of amorphous LiMn2O4 film on polycrystalline Au substrate. LiMn2O4 epitaxial film showed only a single plateau in charge–discharge curves and a single redox peak at the corresponding voltage of cyclic voltammograms. This phenomenon seems to originate from the effect of the epitaxy: the film is directly connected with the substrate by the chemical bond and this connection would suppress the phase transition of LixMn2O4 film during lithium (de-)intercalation. The discharge voltage of LiMn2O4 epitaxial film on SrTiO3 was lower than that of LiMn2O4 film on Al2O3. This lowered discharge voltage may be caused by the electronic interaction between LiMn2O4 film and SrTiO3:Nb n-type semiconductor substrate.  相似文献   

9.
A composite electrode between three-dimensionally ordered macroporous (3DOM) Li0.35La0.55TiO3 (LLT) and LiMn2O4 was fabricated by colloidal crystal templating method and sol–gel process. A close-packed PS beads with the opal structure was prepared by filtration of a suspension containing PS beads. Li–La–Ti–O sol was injected by vacuum impregnation process into the voids between PS beads, and then was heated to form 3DOM-LLT. Three-dimensionally ordered composite material consisting of LiMn2O4 and LLT was prepared by sol–gel process. The prepared composite was characterized with SEM and XRD. All solid-state Li-ion battery was fabricated with the LLT–LiMn2O4 composite electrode as a cathode, dry polymer electrolyte and Li metal anode. The prepared all solid-state cathode exhibited a volumetric discharge capacity of 220 mAh cm−3.  相似文献   

10.
A novel method to produce LiMn2O4/carbon nanocomposites in a rapid, one-step and industrially scalable process is presented. A flame spray and a diffusion flame are combined to continuously produce LiMn2O4 nanoparticles and carbon black, respectively. Powder carbon content is varied by adjusting the diffusion flame conditions. The powders are characterized by X-ray diffraction (XRD), transmission electron microscopy, cyclic voltammetry and galvanostatic cycling for a range of current densities. These LiMn2O4/carbon nanocomposites retain over 80% of their initial galvanostatic discharge capacity for current densities ranging from 5 to 50C-rates, significantly better than pure LiMn2O4 nanoparticles mixed conventionally with commercial carbon blacks. The improved performance of the LiMn2O4/carbon nanocomposites is attributed to the carbon particle contact and/or film coating of the freshly-made LiMn2O4 nanoparticles. This additional well-distributed carbon provides an electrically conductive network that induces a more homogeneous charge transfer throughout the electrode. The suitability of these nanocomposites as a hybrid material is discussed by considering the layout of a thin-layer lithium-ion battery containing these flame-made nanocomposites as positive electrode and LiC6 as negative electrode. The battery’s specific energy is calculated to be 78 Wh kg−1 (50C-rate) based on the results of lithium-ion insertion capacity experiments and reasonable engineering assumptions on the lithium-ion battery design.  相似文献   

11.
The electrochemical stability and conductivity of LiPF6 and lithium bis(oxalato)borate (LiBOB) in a ternary mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were compared. The discharge capacities of LiMn2O4/Li cells with the two electrolytes were measured at various current densities. At room temperature, LiMn2O4/Li cells with the electrolyte containing LiBOB cycled equally well with those using the electrolyte containing LiPF6 when the discharge current rate was under 1 C. At 60 °C, the LiBOB-based electrolyte cycled better than the LiPF6-based electrolyte even when the discharge current rate was above 1 C. Compared with the electrolyte containing LiPF6, in LiMn2O4/Li cells the electrolyte containing LiBOB exhibited better capacity utilization and capacity retention at both room temperature and 60 °C. The scanning electron microscopy (SEM) images and the a.c. impedance measurements demonstrated that the electrode in the electrolyte containing LiBOB was more stable. In summary, LiBOB offered obvious advantages in LiMn2O4/Li cells.  相似文献   

12.
We have synthesized LiMn1.5Ni0.4Cr0.1O4 cathode material for high energy density Li ion rechargeable batteries using sol-gel method. The synthesized materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, cyclic voltammetry and charge-discharge characteristics. It was found that phase pure materials were obtained an annealing temperature of 875 °C for 15 h. The maximum discharge capacity at a constant charge-discharge current rate 1C, 0.5C, and 0.2C were found to be about 99 mAh g−1, 110 mAh g−1, and 131 mAh g−1, respectively. The capacity retentions after 50 charge-discharge cycles were found to be about 99%, 97%, and 97.3% at discharge current rates of 0.2C, 0.5C, and 1C. The stable electrochemical behavior of the above cathode material even at high C rate, showed that it could be used for high energy density and high rate capability Li ion rechargeable batteries.  相似文献   

13.
Cubic spinel Co2SnO4 nanocrystals are successfully synthesized via a simple hydrothermal reaction in alkaline solution. The effect of alkaline concentration, hydrothermal temperature, and hydrothermal time on the structure and morphology of the resultant products were investigated based on X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is demonstrated that pure Co2SnO4 nanocrystals with good crystallinity can be obtained in NaOH solution (2.0 M) at 240 °C for 48 h. The galvanostatic charge/discharge and cyclic voltammetry were conducted to measure the electrochemical performance of the Co2SnO4 nanocrystals. It is shown that Co2SnO4 nanocrystals exhibit good electrochemical activity with high reversible capacity (charge capacity) of 1088.8 mAh g−1 and good capacity retention as anode materials for Li-ion batteries, much better than that of bulk Co2SnO4 prepared by high temperature solid-state reaction.  相似文献   

14.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

15.
Lithium difluoro(oxalato)borate (LiODFB) was investigated as a lithium salt for non-aqueous electrolytes for LiMn2O4 cathode in lithium-ion batteries. Linear sweep voltammetry (LSV) tests were used to examine the electrochemical stability and the compatibility between the electrolytes and LiMn2O4 cathode. Through inductively coupled plasma (ICP) analysis, we compared the amount of Mn2+ dissolved from the spinel cathode in 1 mol L−1 LiPF6/EC + PC + EMC (1:1:3 wt.%) and 1 mol L−1 LiODFB/EC + PC + EMC (1:1:3 wt.%). AC impedance measurements and scanning electron microscopy (SEM) analysis were used to analyze the formation of the surface film on the LiMn2O4 cathode. These results demonstrate that ODFB anion can capture the dissolution manganese ions and form a denser and more compact surface film on the cathode surface to prevent the continued Mn2+ dissolution, especially at high temperature. It is found that LiODFB, instead of LiPF6, can improve the capacity retention significantly after 100 cycles at 25 °C and 60 °C, respectively. LiODFB is a very promising lithium salt for LiMn2O4 cathode in lithium-ion batteries.  相似文献   

16.
Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g−1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it with high-potential cathodes, such as lithium nickel manganese spinel (LNMO) in order to increase the energy density of the final cell. However the use of the 4.7 V vs. Li+/Li0 LNMO cathode material requires to tackle the continuous electrolyte decomposition upon cycling. Coupling these two electrodes to make a lithium ion battery is thus highly appealing but also highly difficult because the cell balancing must account not only for the charge reversibly exchanged by each electrode but also for the irreversible charge losses. In this paper a LNMO-nano TiO2 Li-ion cell with liquid electrolyte is presented: two innovative approaches on both the cathode and the anode sides were developed in order to mitigate the electrolyte decomposition upon cycling. In particular the LNMO surface was coated with ZnO in order to minimize the surface reactivity, and the TiO2 nanoparticles where activated by incorporating nano-lithium in the electrode formulation to compensate for the irreversible capacity loss in the first cycle. With these strategies we were able to assemble balanced Li-ion coin cells thus avoiding the use of electrolyte additives and more hazardous and expensive ex-situ SEI preforming chemical or electrochemical procedures.  相似文献   

17.
Al-doped LiMn2O4 cathode materials synthesized by a newly developed wet-milling method and a dry process method using a conventional solid-state reaction were evaluated physicochemically and electrochemically. In the wet-milling method, a precursor was made from the raw materials atomized by a wet milling. A good cyclic performance was obtained for the LiMn2O4 samples prepared by the wet-milling method, achieved up to 99% of retention of capacity at 50 °C at the 30th cycle. The precursor obtained by the wet-milling method was well homogenous and highly reactive due to their finely ground particles, giving good crystallinity to LiMn2O4 products.  相似文献   

18.
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from a solid solution of Ni1.5Mn1.5O4 that was prepared by means of the solid reaction between Mn(CH3COO)2·4H2O and Ni(CH3COO)2·4H2O. XRD pattern shows that the product is well crystallized with a high degree of Li–M (Ni, Mn) order in their respective layers, and no diffraction peak of Li2MnO3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge–discharge cycling with different rate, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The cycling behavior between 2.5 and 4.4 V at a current rate of 21.7 mA g−1 shows a reversible capacity of about 190 mAh g−1 with little capacity loss after 100 cycles. High-rate capability test shows that even at a rate of 6C, stable capacity about 120 mAh g−1 is retained. Cyclic voltammetry (CV) profile shows that the cathode material has better electrochemical reversibility. EIS analysis indicates that the resistance of charge transfer (Rct) is small in fully charged state at 4.4 V and fully discharged state at 2.5 V versus Li+/Li. The favorable electrochemical performance was primarily attributed to regular and stable crystal structure with little intra-layer disordering.  相似文献   

19.
Although Li-rich solid-solution layered materials Li2MnO3-LiMO2 (M = Co, Ni, etc.) are expected as large capacity lithium insertion cathodes, the fundamental charge-discharge reaction mechanism of these materials is not clear. Therefore the change in valence states of Ni, Co and Mn of Li[Ni0.17Li0.2Co0.07Mn0.56]O2 during charge-discharge was examined in detail using in situ X-ray absorption spectroscopy (XAS), which includes both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. Since the Mn K edge shift during charge-discharge was not clear to determine the valence change of Mn, the Mn K pre-edge shift was examined during charge-discharge. In our measurements, only a small shift of the Mn K pre-edge toward lower energy was observed on discharge from 4.8 to 2.0 V. This corresponds to a decrease of the Mn valence from 4+ to approximately 3.6+. However, this shift cannot explain the large reversible capacity of this material and thus strongly suggests the participation of oxygen in the reversible charge-discharge reaction of this material.  相似文献   

20.
A hybrid battery–supercapacitor (LiMn2O4 + AC)/Li4Ti5O12 using a Li4Ti5O12 anode and a LiMn2O4/activated carbon (AC) composite cathode was built. The electrochemical performances of the hybrid battery–supercapacitor (LiMn2O4 + AC)/Li4Ti5O12 were characterized by cyclic voltammograms, electrochemical impedance spectra, rate charge–discharge and cycle performance testing. It is demonstrated that the hybrid battery–supercapacitor has advantages of both the high rate capability from hybrid capacitor AC/Li4Ti5O12 and the high capacity from secondary battery LiMn2O4/Li4Ti5O12. Moreover, the electrochemical measurements also show that the hybrid battery–supercapacitor has good cycle life performance. At 4C rate, the capacity loss in constant current mode is no more than 7.95% after 5000 cycles, and the capacity loss in constant current–constant voltage mode is no more than 4.75% after 2500 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号