首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical activity and thermal stability of the Pt/TiO2-C were evaluated in the oxygen reduction reaction (ORR) in acid medium at different temperatures. The platinum was selectively deposited onto the TiO2 (Ebg = 2.3 eV) by the photo-irradiation of platinum precursor (Pt4+→Pt0). The Pt/TiO2-C electrocatalyst prepared was characterized by XRD, TEM/EDS, cyclic and lineal voltammetry techniques. TEM images indicated that platinum nanoparticles (<5 nm) were deposited in agglomerates form around the oxide sites. EDS and XRD results confirm the composition and crystalline structure of Pt/TiO2-C. The thermal stability and electrochemical activity of the Pt/TiO2-C for ORR at different temperatures (298–343 K) is higher than Pt/C commercial sample (Pt-Etek). A more favorable apparent enthalpy of activation for Pt/TiO2-C was greatly influenced by addition of oxide in the catalyst compare to Pt-Etek. Single H2/O2 fuel cell performance results of Pt/TiO2-C show an improvement of the power density with the increase of the temperature.  相似文献   

2.
Platinum photodeposition on TiO2 from methanolic solution of chloroplatinic acid (CPA) is investigated to determine the conditions that give optimum photocatalytic activity towards dehydrogenation of methanol. Conditions favoring nucleation of Pt islets rather than their autocatalytic growth enhance the catalytic activity. Photoplatinization from idoplatinic acid, adsorbing more strongly on TiO2 than CPA produced more active Pt/TiO2 catalysts. The best catalyst prepared from CPA yielded H2 from 12.5% methanol solution at a quantum efficiency of 23.9% whereas for idoplatinic acid based catalysts, the quantum efficiency increased to 42.5%.  相似文献   

3.
A photovoltaic solar cell employing an elastomeric electrolyte and using a dye-sensitized nanoporous TiO2 electrode has been assembled. The polymeric electrolyte is poly(epichlorohydrin-co-ethylene oxide) filled with NaI/I2. This cell exhibits an open-circuit voltage of 0.71 V and a short-circuit current of 0.46 mA cm−2 under 120 mW cm−2 of white-light illumination. The overall conversion efficiency of the cell is 0.22%. The polymeric electrolyte behavior under different conditions of external resistance and intensity of light as well as the performance of this photoelectrochemical cell are discussed.  相似文献   

4.
In this paper, TiO2 nanotubes/Pt/C (TNT/Pt/C) catalysts for ethanol electro-oxidation were prepared by co-mixing method in solution. TEM and XRD showed that uniform anatase TiO2 nanotubes were about 100 nm in length and 8 nm in diameter and the TGA results indicated that the amount of H2O contained in TiO2 nanotubes was much more than that in anatase TiO2. The composite catalysts activities were measured by cyclic voltammetry (CV), chronoamperometry and CO stripping voltammetry at 25 °C in acidic solutions. The results demonstrated that the TNT can greatly enhance the catalytic activity of Pt for ethanol oxidation and increase the utilization rate of platinum. The CO stripping test showed that the TNT can shift the CO oxidation potential to lower direction than TiO2 does, which is helpful for ethanol oxidation.  相似文献   

5.
Pt nanoparticles supported on TiB2 conductive ceramics (Pt/TiB2) have been prepared through a liquid reduction method, where the TiB2 surfaces are stabilized with perfluorosulfonic acid. The prepared Pt/TiB2 catalyst is characterized with X-ray diffraction (XRD) and TEM techniques, and a rotating disk electrode (RDE) apparatus. The Pt nanoparticles are found to uniformly disperse on the surface of the TiB2 particles with narrow size distribution. The electrochemical stability of Pt/TiB2 is evaluated and found highly electrochemically stable compared to a commercial Pt/C catalyst. Meanwhile, the catalyst also shows comparable performance for oxygen reduction reaction (ORR) to the Pt/C. The mechanism of the remarkable stability and comparable activity for ORR on Pt/TiB2 is also proposed and discussed.  相似文献   

6.
Highly ordered and uniformly distributed TiO2 nanotubes on a pure titanium substrate (TNTs/Ti) are successfully fabricated by a pulse anodic oxidation method as the support for Pd electrocatalyst. Pd is electrochemically deposited onto TNTs/Ti support. The sensitization with SnCl2 and activation with PdCl2 are critical for the formation of highly dispersed Pd nanoparticles on the TNTs/Ti support. It has been found that both Pd/TNTs/Ti and Pt electrodes show the similar electrochemical behavior in H2SO4, implying the possibility to develop the Pt-free alternative electrocatalyst based on the Pd/TNTs/Ti system in acid medium. The preliminary results in this work show that the Pd/TNTs/Ti catalysts have an acceptable catalytic activity for the oxygen reduction reaction (ORR) in acid medium. The factors influencing the structure of TNTs and the catalytic activity of Pd/TNTs/Ti for the ORR are also studied in detail.  相似文献   

7.
We report a comparative study of the alloy formation and electrochemical activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). For the Pt-Co system the maximum annealing temperatures were 650 °C, 800 °C and 900 °C for 7 h to drive the Pt-Co alloy formation and the particle growth. EDS and XRD were employed for the characterization of catalyst powders. The RDE and RRDE experiments were conducted in 0.1 M HClO4 at room temperature.We demonstrate that the mass and surface area specific ORR activities of Pt-Co and Pt-Cu alloys after voltammetric activation exhibit a considerable improvement compared to those of pure Pt/C. The dealloyed PtCo3 (800 °C/7 h) electrocatalyst performs 3 times higher in terms of Pt-based mass activity and 4-5 times higher in terms of ECSA-based specific activity than a 28.2 wt.% Pt/C. Dealloyed Pt-Co catalysts (800 °C/7 h) show the most favorable balance between mass and specific ORR activity with a particle size of 2.2 ± 0.1 nm. We hypothesize that geometric strain effects of the dealloyed Pt-Co nanoparticles, similar to those found in dealloyed PtCu3 nanoparticles, are responsible for the improvement in ORR activity [1].  相似文献   

8.
Dye-sensitized solar cells are promising candidates as supplementary power sources; the dominance in the photovoltaic field of inorganic solid-state junction devices is in fact now being challenged by the third generation of solar cells based on dye-sensitized, nano-porous photo-electrodes and polymer electrolytes. Polymer electrolytes are actually very favorable for photo-electrochemical solar cells and in this study poly(acrylonitrile)-MgI2 based complexes are used. As ambient temperature conductivity of poly(acrylonitrile)-salt complexes are in general low, a conductivity enhancement is attained by blending with the plasticizers ethylene carbonate and propylene carbonate. At 20 °C the optimum ionic conductivity of 1.9 × 10−3 S cm−1 is obtained for the (PAN)10(MgI2)n(I2)n/10(EC)20(PC)20 electrolyte where n = 1.5. The predominantly ionic nature of the electrolyte is seen from the DC polarization data. Differential scanning calorimetric thermograms of electrolyte samples with different MgI2 concentrations were studied and glass transition temperatures were determined. Further, in this study, a dye-sensitized solar cell structure was fabricated with the configuration Glass/FTO/TiO2/Dye/Electrolyte/Pt/FTO/Glass and an overall energy conversion efficiency of 2.5% was achieved under solar irradiation of 600 W m−2. The I-V characteristics curves revealed that the short-circuit current, open-circuit voltage and fill factor of the cell are 3.87 mA, 659 mV and 59.0%, respectively.  相似文献   

9.
New materials for polymer electrolyte membrane fuel cell current collectors   总被引:15,自引:0,他引:15  
Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.  相似文献   

10.
Titanium dioxide (TiO2) has been widely used with UV light to degrade organic waste contaminants. Immobilised layers of TiO2 on electrode surfaces have shown enhanced activity when appropriate potentials have been applied. In this work, it is shown that a novel immobilised layer of TiO2 on an electrode, a TiO2/poly(vinylchloride) composite cast from THF, mineralises acetone or starch when exposed to a xenon arc light only if the electrode is connected to a Pt electrode where concomitant reduction of oxygen occurs. When an isolated electrode with an immobilised TiO2 layer is exposed to UV light in a solution of starch or acetone, no decrease in acetone or starch concentration is observed.  相似文献   

11.
In this paper, the surface states of Pt/TiO2 thin film were tested in air, H2 and N2 flows. Pt/TiO2 was prepared by means of photoreduction of on anatase nano-TiO2 powders and was coated on the microscopy glass using powder–sol technique. Powder conductivity method was applied in the analysis of surface states. The experimental results show that a new surface state was formed in air flow; which was 0.43 eV lower than the conduction band edge of TiO2. In N2 flow, three surface states, with the energy levels of 0.42, 0.62 and 0.90 eV, respectively, were detected. Compared with that tested in airflow, 0.42 and 0.62 eV could be attributed to Pt and floating bond of TiO2 respectively, while 0.90 eV might have resulted from the Ti3+ formed at high temperature in N2 flow. The conductivity of the sample tested in H2 flow increased significantly and was almost unchanged with temperature, which could be interpreted by the dissociative adsorption of H2 on Pt.  相似文献   

12.
The influence of redox-treated Pt/TiO2 photocatalysts on H2 production is investigated. Catalyst characterizations are performed by TEM, XPS, XRD, BET, and UV–vis/DR spectroscopy techniques. In terms of production rate, the oxidation treatment shows higher reactivity than the reduction treatment. The reduction treatment allows the formation of metallic Pt(0), which more easily catalyzes the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts have lower SBET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of XPS and optical analyses, PtO/TiO2 shows a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 is more capable of achieving water splitting for H2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts can significantly enhance the reactivity of photocatalytic H2 production because of their homogenous distribution, lower phase transition, higher SBET, and higher energy band gap.  相似文献   

13.
The polymer electrolyte membrane fuel cell (PEMFC) was investigated comparatively as a single cell and a 30-cell stack. Various types of Nafion membranes, such as Nafion 117, 115, 112 and 105, were tested as electrolyte within the single cell and at different temperatures, among which Nafion 112 gave the optimal result. The 30-cell stack was evaluated at different humidities and temperatures. The potential–current and power–current curves, both for single cell and the stack, were analyzed by computer simulation, whereby the kinetic and mass-transfer parameters were calculated. The long-term performance of the stack and the water production during long-term operation were also measured.  相似文献   

14.
Fuel cells have risen as a clean technology for power generation and much effort has been done for converting renewable feedstock in hydrogen. The water-gas shift reaction (WGS) can be applied aiming at reducing the CO concentration in the reformate. As Pt/CeO2 catalysts have been pointed out as an alternative to the industrial WGS catalysts, the modification of such systems with magnesium was investigated in this work. It was shown that the addition of MgO to Pt/CeO2 increased the activity and stability of the catalyst irrespective of the preparation method used, either impregnation or co-precipitation. Based on TPR and IR spectroscopy experiments, it was seen that the presence of magnesium improved ceria reduction favoring the creation of OH groups, which are considered the active sites for the WGS reaction. The evolution of the surface species formed under reaction conditions (CO, H2O, H2) observed by DRIFTS evidenced that the formation of formate species and the generation of CO2 is closely attached to each other; under a reaction stream containing hydrogen the presence of formate species showed to be more relevant while the CO2 formation was hindered. It is suggested that the addition of MgO favors the formate decomposition and lower the carbonate concentration on the catalyst surface during WGS reaction.  相似文献   

15.
Pt nanoparticles decorated TiO2 nanotubes (Pt/TiO2NTs) modified electrode has been successfully synthesized by depositing Pt in TiO2NTs, which were prepared by anodization of the Ti foil. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties. The Pt/TiO2NTs electrode shows excellent electrocatalytic activity toward methanol oxidation reaction (MOR) in alkaline electrolyte without UV irradiation.  相似文献   

16.
A new nitrogen-doped carbon (CNx) support for Pt electrocatalysts was prepared by carbonizing polypyrrole on the surface of ZrO2 (ZrO2@CNx) at high temperature. Well-dispersed Pt nanoparticles were easily formed on the ZrO2@CNx. The electrocatalyst was characterized by FT-IR, XRD, TEM, XPS. The electrochemical performances indicate that the presence of ZrO2 modified the electro-structure of Pt on the catalyst surface and that ZrO2@CNx had superior oxygen reduction activity compared to a nitrogen-doped carbon coated carbon (C@CNx).  相似文献   

17.
A novel perovskite intercalated nanomaterial HLaNb2O7/(Pt, TiO2) is fabricated by successive intercalated reaction of HLaNb2O7 with [Pt(NH3)4]Cl2 aqueous solution, n-C6H13NH2/C2H5OH organic solution and acidic TiO2 colloid solution, followed by ultraviolet light irradiation. The gallery height and the band gap energy of HLaNb2O7/(Pt, TiO2) is less than 0.6 nm and 3.14 eV, respectively. The photocatalytic activity of HLaNb2O7/TiO2 is superior to that of unsupported TiO2 and is enhanced by the co-incorporation of Pt. The photocatalytic hydrogen evolution based on HLaNb2O7/(Pt, TiO2) is 240 cm3 h−1 g−1 using methanol as a sacrificial agent under irradiation with wavelength more than 290 nm from a 100-W mercury lamp. High photocatalytic activity of HLaNb2O7/(Pt, TiO2) may be due to the host with rare earth La element and perovskite structure, the quantum size effect of intercalated semiconductor and the coupling effect between host and guest.  相似文献   

18.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

19.
Platinum (Pt)-based electrocatalysts supported by reduced graphene oxide (rGO) is fabricated under microwave-assisted polyol method with various nucleation and growth conditions. The surface morphologies of the Pt nanoparticles (NPs) under various reaction conditions owing to different Pt NP sizes and inter-particle spacings are investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, cyclic and linear sweep voltammetry, and electrochemical impedance spectroscopy. The synthesized Pt/rGO catalyst under nucleation and growth times of 10 s and 50 s, respectively, exhibits excellent catalytic activity with increased electrochemical surface area, high density, good uniformity and surface morphology with a particle size and inter-particle spacing of 2.16 nm and 17.2 nm, respectively. These results elucidate the relationship between the Pt NP morphology distribution and oxygen reduction reaction of catalysts in polymer electrolyte membrane fuel cell systems. We also highlight the important role of size and inter-particle spacing on the Pt electrochemical catalystic performance.  相似文献   

20.
A Cu@Pt/C catalyst was synthesized by a two-step reduction method using Vulcan XC-72R as the supporting material. Physical and electrochemical techniques were applied to investigate the structure and performance of the catalyst. X-ray diffraction (XRD) and transmission electron microscopy (TEM) examinations showed that the catalyst has a core-shell structure, the distribution of the catalyst particles is quite uniform, and the particle size ranges from 5 to 6 nm. Cyclic voltammetry (CV) and rotating disk electrode (RDE) tests confirmed the high performance of the Cu@Pt/C catalyst with the atom ratio Cu: Pt of 2.73: 1, making it a promising low-Pt catalyst for proton exchange membrane fuel cell (PEMFC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号