首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perovskite type La0.8Sr0.2Ga0.83Mg0.17O3 powders were prepared via simple polyol method for the first time in literature. Obtained material was characterized by using XRD, SEM, Impedance Spectroscopy and density measurements. Pure LSGM powders were achieved after heat treatment at 1100 °C for 12 h. 87% relative density was obtained after pressing of these powders under 1 MPa and sintering at 1250 °C for 12 h. Average particle size was calculated as 1.77–2.4 μm from SEM micrographs. Overall conductivity of the LSGM pellet was found to be 0.0014 S/cm at 850 °C with impedance analysis and showed that the preparation process needs improvements.  相似文献   

2.
Bismuth oxide and scandia co-doped zirconia (Sc2O3)0.06(Bi2O3)x(ZrO2)0.94–x (ScSZB, x = 0, 0.01, 0.03, 0.05, 0.07, 0.1) powders are prepared via a citrate sol-gel method. Bi2O3 promotes the sintering process of scandia stabilized zirconia (ScSZ) and increases electrical conductivity of system. A high conductivity of ~0.094 S/cm at 800 °C is achieved on 5 mol% Bi2O3 doped ScSZ (ScSZB05). X-ray Rietveld refinement and transmission electron microscope (TEM) analysis of the ScSZB05 reveal the formation of cubic phase and rhombohedral phase at room temperature. The electrolyte-supported cell constructed by the ScSZ electrolyte gives the maximum power density of 258.3 mW/cm2 at 800 °C, while the cell with ScSZB05 electrolyte shows a higher value of 387.6 mW/cm2. The performance obtained by theoretical simulation of the two electrolyte-supported cells is in good agreement with the experimental results.  相似文献   

3.
The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO–MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.  相似文献   

4.
Electrical and structural properties of bismuth oxide doped scandia-stabilized zirconia (ScSZ) electrolyte for solid oxide fuel cells (SOFCs) have been evaluated by means of XRD, TGA, DTA, and impedance spectroscopy. The amount of Bi2O3 in the ScSZ was varied in the range of 0.25–2.0 mol%. The original ScSZ samples indicated a rhombohedral crystalline structure that in general has lower conductivity than the cubic phase. However, the addition of Bi2O3 to ScSZ electrolyte was found to stabilize the cubic crystalline phase as detected by XRD. Impedance spectroscopy measurements in the temperature range between 350 and 900 °C indicated a sharp increase in conductivity for the system containing 2 mol% of Bi2O3 that is attributed to the presence of the cubic phase. In addition, impedance spectroscopy measurements revealed significant decrease of both the grain bulk and grain boundary resistances with respect to the temperature change from 600 to 900 °C and concentration of Bi2O3 from 0.5 to 2 mol%. The electrical conductivity at 600 °C obtained for 2 mol% Bi2O3 doped ScSZ was 0.18 S cm−1.  相似文献   

5.
Dense La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM, 5 μm in thickness)/Ce0.8Sm0.2O2-δ (SDC, 400 nm in thickness) bilayer films were deposited on a dense NiO (Fe3O4)-SDC anode substrate by a pulsed laser deposition (PLD) method. After in-situ reduction, the substrate turned to be porous and it can be used as a porous anode substrate. The power density was strongly affected by the oxide ion conductor combined with LSGM and it was found that SDC is the most useful for achieving the high power density. Preparation of Sm0.5Sr0.5CoO3 cathode film by PLD method is also studied for decreasing the contact resistance of cathode. Preparation of SSC film by PLD is effective for decreasing cathodic overpotential and 400 nm thick film is the most effective for achieving the high power density. At 773 K, the maximum power density of the cell becomes higher than 500 mW/cm2.  相似文献   

6.
GdBaCo2O5+x (GBCO) was evaluated as a cathode for intermediate-temperature solid oxide fuel cells. A porous layer of GBCO was deposited on an anode-supported fuel cell consisting of a 15 μm thick electrolyte of yttria-stabilized zirconia (YSZ) prepared by dense screen-printing and a Ni–YSZ cermet as an anode (Ni–YSZ/YSZ/GBCO). Values of power density of 150 mW cm−2 at 700 °C and ca. 250 mW cm−2 at 800 °C are reported for this standard configuration using 5% of H2 in nitrogen as fuel. An intermediate porous layer of YSZ was introduced between the electrolyte and the cathode improving the performance of the cell. Values for power density of 300 mW cm−2 at 700 °C and ca. 500 mW cm−2 at 800 °C in this configuration were achieved.  相似文献   

7.
In the present paper, we investigated the electrical performance of anode-supported solid oxide fuel cells (SOFCs) composed of Gd0.1Ce0.9O1.95 (GDC) electrolyte films of 1-75 μm in thickness prepared by simple and cost-effective methods (dry co-pressing process and spray dry co-pressing process), and discussed the effect of thickness of the GDC electrolyte films on the electrical performance of the anode-supported SOFCs. It was shown that reducing the thickness of the GDC electrolyte films could increase the maximum power densities of the anode-supported SOFCs. The increase of the maximum power densities was attributed to the decrease of the electrolyte resistance with reducing the electrolyte thickness. However, when the thickness of the GDC electrolyte films was less than a certain value (approximately 5 μm in this study), the maximum power densities decreased with the decrease in the thickness of the GDC electrolyte films. The calculated electron fluxes through the GDC electrolyte films increased obviously with reducing the thickness of the GDC electrolyte films, which was the reason why the maximum power densities decreased. Therefore, for anode-supported SOFCs based on electrolytes with mixed electronic-ionic conductivity, there was an optimum electrolyte thickness for obtaining higher electrical performance.  相似文献   

8.
Electrochemical measurements of fuel cells based on proton conductor electrolyte Ba2(In0.8Ti0.2)2O5.2−n(OH)2n and prepared through a tape casting process and a co-pressing of anode-composite powder and electrolyte tape were performed at 500 °C under wet H2. The varying parameter between the prepared cells was the thickness of the electrolyte that can be controlled during the tape casting process. The maximum power density was obtained for the cell with the thinnest electrolyte (35 μm) and was about 22 mW cm−2 with an ohmic resistance about 2 Ω cm2 at 500 °C.  相似文献   

9.
Bilayers comprised of dense and porous YSZ–Al2O3 (20 wt%) composite were tape cast, processed, and then fabricated into working solid oxide fuel cells (SOFCs). The porous part of the bilayer was converted into anode for direct oxidation of fuels by infiltrating CeO2 and Cu. The cathode side of the bilayer was coated with an interlayer [YSZ–Al2O3 (20 wt%)]: LSM (1:1) and LSM as cathode. Several button cells were evaluated under hydrogen/air and propane/air atmospheres in intermediate temperature range and their performance data were analyzed. For the first time the feasibility of using YSZ–Al2O3 material for fabricating working SOFCs with high open circuit voltage (OCV) and power density is demonstrated. AC impedance spectroscopy and scanning electron microscopy (SEM) techniques were used to characterize the membrane and cell.  相似文献   

10.
We show that cobalt manganese oxide (Co2MnO4) spinel can be sintered (without the application of external pressure) in a few seconds at about ∼325 °C by applying a DC electrical field of 12.5 V cm−1, by a process known as flash-sintering. A transition from normal to flash-sintering occurs when the field is ≥7.5 V cm−1. The flash sintering phenomenon has also been observed in yttria-stabilized zirconia (3YSZ). Together, the results for 3YSZ and Co2MnO4 point towards the generality of the process, since 3YSZ is an ionic conductor while the spinel is a predominantly electronic conductor. The Co2MnO4 spinels are used to protect metals, such as stainless steels, in solid oxide fuel cells. The low temperatures employed in flash sintering can obviate interfacial interdiffusion with the metal substrate; in nominal sintering these interfacial reactions can produce deleterious interfacial phases.  相似文献   

11.
Porous La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) electrodes on anode support cells were infiltrated with AgNO3 solutions in citric acid and ethylene glycol. Two types of solid oxide fuel cells with the LSCF–Ag cathode, Ni–YSZ/YSZ/LSCF–Ag and Ni–Ce0.9Gd0.1O1.95(GDC)/GDC/LSCF–Ag, were examined in a temperature range 530–730 °C under air oxidant and moist hydrogen fuel. The infiltration of about 18 wt.% Ag fine particles into LSCF resulted in the enhancement of the power density of about 50%. The maximum power density of Ni–YSZ/YSZ/LSCF was enhanced from 0.16 W cm−2 to 0.25 W cm−2 at 630 °C by infiltration of AgNO3. No significant degradation of out-put power was observed for 150 h at 0.7 V and 700 °C. The Ni–GDC/GDC/LSCF–Ag cell showed the maximum power density of 0.415 W cm−2 at 530 °C.  相似文献   

12.
A solid oxide fuel cell with Sm0.2Ce0.8O1.9 (SDC) electrolyte of 10 μm in thickness and Ni–SDC anode of 15 μm in thickness on a 0.8 mm thick Ni–YSZ cermet substrate was fabricated by tape casting, screen printing and co-firing. A composite cathode, 75 wt.% Sm0.5Sr0.5CoO3 (SSCo) + 25 wt.% SDC, approximately 50 μm in thickness, was printed on the co-fired half-cell, and sintered at 950 °C. The cell showed a high electrochemical performance at temperatures ranging from 500 to 650 °C. Peak power density of 545 mW cm−2 at 600 °C was obtained. However, the cell exhibited severe internal shorting due to the mixed conductivity of the SDC electrolyte. Both the amount of water collected from the anode outlet and the open circuit voltage (OCV) indicated that the internal shorting current could reach 0.85 A cm−2 or more at 600 °C. Zr content inclusions were found at the surface and in the cross-section of the SDC electrolyte, which could be one of the reasons for reduced OCV and oxygen ionic conductivity. Fuel loss due to internal shorting of the thin SDC electrolyte cell becomes a significant concern when it is used in applications requiring high fuel utilization and electrical efficiency.  相似文献   

13.
A novel Ir0.5Mn0.5O2 cathode has been synthesized by thermal decomposition of mixed H2IrCl6 and Mn(NO3)2 water solution. The Ir0.5Mn0.5O2 cathode has been characterized by XRD, field emission SEM (FESEM) and AC impedance spectroscopy. XRD result shows that rutile-structured Ir0.5Mn0.5O2 phase is formed by thermal decomposition of mixed H2IrCl6 and Mn(NO3)2 water solution. FESEM micrographs show that a porous structure with well-necked particles forms in the cathode after sintering at 1000 °C. The average grain size is between 20 and 30 nm. Two depressed arcs appear in the medium-frequency and low-frequency region, indicating that there are at least two different processes in the cathode reaction: charge transfer and molecular oxygen dissociation followed by surface diffusion. The minimum area specific resistance (ASR) is 0.67 Ω cm2 at 800 °C. The activation energy for the total oxygen reduction reaction is 93.7 kJ mol−1. The maximum power densities of the Ir0.5Mn0.5O2/LSGM/Pt cell are 43.2 and 80.7 mW cm−2 at 600 and 700 °C, respectively.  相似文献   

14.
In this study the properties of the compounds La0.33Sr0.67Ti0.92X0.08O3+δ where X = Al3+, Ga3+, Fen+, Mg2+, Mnn+ and Sc3+, have been investigated in the search for alternative solid oxide fuel cell anodes. The choice of dopant controls the structure, redox properties, conductivity and electrocatalytic properties of the compound.  相似文献   

15.
The apatite-type lanthanum silicate films were successfully synthesized by modified atmosphere plasma spraying using lanthanum oxide and silicon oxide mixed powders and precalcined hypereutectic powders in the size range 1–3 μm and 5–8 μm, respectively, as starting feedstock materials. The films differed not only in microstructural scale, but also in the characteristic of the degree of film densification. A detail describing the evolution of microstructure has been discussed. A considerable improvement in densification of the La10(SiO4)6O3 electrolyte films has been observed.  相似文献   

16.
This paper reports the development of intermediate temperature-operating solid oxide fuel cell stacks using anode-supported planar cells with LaNi0.6Fe0.4O3 (LNF)cathode. We developed metallic separators with radial gas flow channels and an anode seal structure. To achieve good power-generating characteristics, we propose two cathode contact methods. According to a performance evaluation at 800 °C, power density of 0.5 W cm−2 is obtained at the current density of 1.0 A cm−2 when operating with a sufficient fuel amount, and power conversion efficiency of over 50% LHV is obtained at the current density of more than 0.2 A cm−2 when operating at a high fuel utilization rate.  相似文献   

17.
Nanocrystalline Ce0.8Sm0.2O1.9 (SDC) has been synthesized by a combined EDTA–citrate complexing sol–gel process for low temperature solid oxide fuel cells (SOFCs) based on composite electrolyte. A range of techniques including X-ray diffraction (XRD), and electron microscopy (SEM and TEM) have been employed to characterize the SDC and the composite electrolyte. The influence of pH values and citric acid-to-metal ions ratios (C/M) on lattice constant, crystallite size and conductivity has been investigated. Composite electrolyte consisting of SDC derived from different synthesis conditions and binary carbonates (Li2CO3–Na2CO3) has been prepared and conduction mechanism is discussed. Water was observed on both anode and cathode side during the fuel cell operation, indicating the composite electrolyte is co-ionic conductor possessing H+ and O2− conduction. The variation of composite electrolyte conductivity and fuel cell power output with different synthesis conditions was in accordance with that of the SDC originated from different precursors, demonstrating O2− conduction is predominant in the conduction process. A maximum power density of 817 mW cm−2 at 600 °C and 605 mW cm−2 at 500 °C was achieved for fuel cell based on composite electrolyte.  相似文献   

18.
Detailed X-ray diffraction (XRD) analysis of two different Sr-doped LaFeO3 cathodes, YSZ electrolyte and two Sm/Gd-doped CeO2 interlayer and their mixtures were used to evaluate the formation of undesired secondary reaction compounds. The analysis of room temperature X-ray diffraction data of the mixtures indicates the crystallization of strontium and/or lanthanum zirconates between the cathode and the electrolyte materials and no detected reaction between the cathode and the interlayer materials.  相似文献   

19.
The thermal properties of Li4/3Ti5/3O4 and Li1+xMn2O4 electrodes were investigated by isothermal micro-calorimetry (IMC). The 150-mAh g−1 capacity of a Li/Li4/3Ti5/3O4 half cell was obtained through the voltage plateau that occurs at 1.55 V during the phase transition from spinel to rock salt. Extra capacity below 1.0 V was attributed to the generation of a new phase. The small and constant entropy change of Li4/3Ti5/3O4 during the spinel/rock-salt phase transition indicated its good thermal stability. Accelerated rate calorimetry confirmed that Li4/3Ti5/3O4 has better thermal characteristics than graphite. The IMC results for a Li/Li1+xMn2O4 half cell indicated less heat variation due to the suppression of the order/disorder change by lithium doping. The heat profiles of the Li4/3Ti5/3O4/Li1+xMn2O4 full cell indicated less heat generation compared with a mesocarbon-microbead graphite/Li1+xMn2O4 cell.  相似文献   

20.
Search for electrolyte materials with a high ionic conductivity at low temperatures has always been a key challenge for the development of solid oxide fuel cells (SOFCs). In present work, we found un-doped CeO2 nanocubes used as an electrolyte for advanced fuel cell showed remarkable performances. The CeO2 nanocubes were synthesized by a simple hydrothermal approach. The synthesized CeO2 nanocubes were used as an electrolyte sandwiched between two layers of semiconducting Ni0.8Co0.15Al0.05LiO2-δ to fabricate the fuel cell. Such device has achieved an excellent maximum power density of 406 mW cm?2 at 600 °C. These results demonstrate CeO2/CeO2-δ heterogeneous interfaces could provide a high ionic conductive path conductor for the electrolyte in SOFCs, which widen the selecting range of the electrolyte candidates for advanced SOFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号