首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cubic spinel Co2SnO4 nanocrystals are successfully synthesized via a simple hydrothermal reaction in alkaline solution. The effect of alkaline concentration, hydrothermal temperature, and hydrothermal time on the structure and morphology of the resultant products were investigated based on X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is demonstrated that pure Co2SnO4 nanocrystals with good crystallinity can be obtained in NaOH solution (2.0 M) at 240 °C for 48 h. The galvanostatic charge/discharge and cyclic voltammetry were conducted to measure the electrochemical performance of the Co2SnO4 nanocrystals. It is shown that Co2SnO4 nanocrystals exhibit good electrochemical activity with high reversible capacity (charge capacity) of 1088.8 mAh g−1 and good capacity retention as anode materials for Li-ion batteries, much better than that of bulk Co2SnO4 prepared by high temperature solid-state reaction.  相似文献   

2.
To prepare a high-capacity cathode material with improved electrochemical performance for lithium rechargeable batteries, Co3(PO4)2 nanoparticles are coated on the surface of powdered Li[Co0.1Ni0.15Li0.2Mn0.55]O2, which is synthesized by a simple combustion method. The coated powder prepared under proper conditions for Co3(PO4)2 content and annealing temperature shows an optimum coating layer that consists of a LixCoPO4 phase formed by reaction with lithium impurities during heat treatment. A sample coated with 3 wt.% Co3(PO4)2 and annealed at 800 °C proves to be the best in terms of specific capacity, cycle performance and rate capability. Thermal stability is also enhanced by the coating, as demonstrated a decrease in the onset temperature and/or the heat generated during thermal runaway.  相似文献   

3.
Porous Co3O4 nanostructured thin films are electrodeposited by controlling the concentration of Co(NO3)2 aqueous solution on nickel sheets, and then sintered at 300 °C for 3 h. The as-prepared thin films are characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical measurements show that the highly porous Co3O4 thin film with the highest electrochemically active specific surface area (68.64 m2 g−1) yields the best electrochemical performance compared with another, less-porous film and with a non-porous film. The highest specific capacity (513 mAh g−1 after 50 cycles) is obtained from the thinnest film with Co3O4 loaded at rate of 0.05 mg cm−2. The present research demonstrates that electrode morphology is one of the crucial factors that affect the electrochemical properties of electrodes.  相似文献   

4.
Spinel lithium manganese oxide LiMn2O4 powders were synthesized by a flame-assisted spray technology (FAST) with a precursor solution consisting of stoichiometric amounts of LiNO3 and Mn(NO3)2·4H2O dissolved in methanol. The as-synthesized LiMn2O4 particles were non-agglomerated, and nanocrystalline. A small amount of Mn3O4was detected in the as-synthesized powder due to the decomposition of spinel LiMn2O4 at the high flame temperature. The impurity phase was removed with a post-annealing heat-treatment wherein the grain size of the annealed powder was 33 nm. The charge/discharge curves of both powders matched the characteristic plateaus of spinel LiMn2O4 at 3 V and 4 V vs. Li. However, the annealed powder showed a higher initial discharge capacity of 115 mAh g−1 at 4 V. The test cell with annealed powder showed good rate capability between a voltage of 3.0 and 4.3 V and a first cycle coulombic efficiency of 96%. The low coulombic efficiency from capacity fading may be due to oxygen defects in the annealed powder. The results suggest that FAST holds potential for rapid production of uniform cathode materials with low-cost nitrate precursors and minimal energy input.  相似文献   

5.
SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials with improved cycling performance over 2.5–4.6 V were investigated. The structural and electrochemical properties of the materials were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), charge–discharge tests and electrochemical impedance spectra (EIS). The results showed that the crystalline SrF2 with about 10–50 nm particle size is uniformly coated on the surface of LiNi1/3Co1/3Mn1/3O2 particles. As the coating amount increased from 0.0 to 2.0 mol%, the initial capacity and rate capability of the coated LiNi1/3Co1/3Mn1/3O2 decreased slightly owing to the increase of the charge-transfer resistance; however, the cycling stability was improved by suppressing the increase of the resistance during cycling. 4.0 mol% SrF2-coated LiNi1/3Co1/3Mn1/3O2 showed remarkable decrease of the initial capacity. 2.0 mol% coated sample exhibited the best electrochemical performance. It presented an initial discharge capacity of 165.7 mAh g−1, and a capacity retention of 86.9% after 50 cycles at 4.6 V cut-off cycling.  相似文献   

6.
Nano-Ni3Sn2 intermetallic compound was successfully prepared by solvothermal method for an anode material of lithium-ion batteries. Its microstructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Electrochemical performances were evaluated in a lithium-ion model cell Li/LiPF6 (EC + DMC)/Ni3Sn2. The electrochemical lithiation and de-lithiation behavior of nano-Ni3Sn2 was investigated by ex situ XRD. Diffraction peaks of Ni3Sn2 widened and shrank gradually during lithiation. Sharp Ni3Sn2 peaks appeared again after full de-lithiation. It was proved that nano-Ni3Sn2 could be reversibly charged and discharged with lithium though the de-lithiation capacity of nano-Ni3Sn2 was lower than its theoretical capacity.  相似文献   

7.
LiFePO4 as a cathode material for rechargeable lithium batteries was prepared by hydrothermal process at 170 °C under inert atmosphere. The starting materials were LiOH, FeSO4, and (NH4)2HPO4. The particle size of the obtained LiFePO4 was 0.5 μm. The electrochemical properties of LiFePO4 were characterized in a mixed solvent of ethylene carbonate and diethyl carbonate (1:1 in volume) containing 1.0 mol dm−3 LiClO4. The hydrothermally synthesized LiFePO4 exhibited a discharge capacity of 130 mA h g−1, which was smaller than theoretical capacity (170 mA h g−1). The annealing of LiFePO4 at 400 °C in argon atmosphere was effective in increasing the discharge capacity. The discharge capacity of the annealed LiFePO4 was 150 mA h g−1.  相似文献   

8.
A carbon-coated nanocrystalline LiFePO4 cathode material was synthesized by pyrolysis of polyacrylate precursor containing Li+, Fe3+ and PO4. The powder X-ray diffraction (XRD) and high-resolution TEM micrographs revealed that the LiFePO4/C composite as prepared has a core-shell structure with pure olivine LiFePO4 crystallites as cores and intimate carbon coating as a shell layer. Between the composite particulates, there exists a carbon matrix binding the nanocrystallites together into micrometer particles. The electrochemical measurements demonstrated that the LiFePO4/C composite with an appropriate carbon content can deliver a very high discharge capacity of 157 mAh g−1 (>92% of the theoretical capacity of LiFePO4) with 95% of its initial capacity after 30 cycles. Since this preparation method uses less costly materials and operates in mild synthetic conditions, it may provide a feasible way for industrial production of the LiFePO4/C cathode materials for the lithium-ion batteries.  相似文献   

9.
A modified Zr-coating process was introduced to improve the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. The ZrO2-coating was carried out on an intermediate, (Ni1/3Co1/3Mn1/3)(OH)2, rather than on Li(Ni1/3Co1/3Mn1/3)O2. After a heat treatment process, one part of the Zr covered the surface of Li(Ni1/3Co1/3Mn1/3)O2 in the form of a Li2ZrO3 coating layer, and the other part diffused into the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2. A decreasing gradient distribution in the concentration of Zr was detected from the surface to the bulk of Li(Ni1/3Co1/3Mn1/3)O2 by X-ray photoelectron spectra (XPS). Electrochemical tests indicated that the 1% (Zr/Ni + Co + Mn) ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2 prepared by this process showed better cyclability and rate capability than bare Li(Ni1/3Co1/3Mn1/3)O2. The result can be ascribed to the special effect of Zr in ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2. The surface coating layer of Li2ZrO3 improved the cycle performance, while the incorporation of Zr in the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2 modified the rate capability by increasing the lattice parameters. Electrochemical impedance spectra (EIS) results showed that the increase of charge transfer resistance during cycling was suppressed significantly by ZrO2 modification.  相似文献   

10.
The surface of LiNi1/3Co1/3Mn1/3O2 (LNMCO) particles has been studied for material synthesized at 900 °C by a two-step process from a mixture of LiOH·H2O and metal oxalate [(Ni1/3Co1/3Mn1/3)C2O4] obtained by co-precipitation. Samples have been characterized by X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), Raman scattering (RS) spectroscopy, and magnetic measurements. We have investigated the effect of the heat treatment of particles at 600 °C with organic substances such as sucrose and starch. HRTEM images and RS spectra indicate that the surface of particles has been modified. The annealing does not lead to any carbon coating but it leads to the crystallization of the thin disordered layer on the surface of LiNi1/3Co1/3Mn1/3O2. The beneficial effect has been tested on the electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 cathode materials. The capacity at 10C-rate is enhanced by 20% for post-treated LNMCO particles at 600 °C for half-an-hour.  相似文献   

11.
Layered intercalation compounds LiM0.02Co0.98O2 (M = Mo6+, V5+, Zr4+) have been prepared using a simple solid-state method. Morphological and structural characterization of the synthesized powders is reported along with their electrochemical performance when used as the active material in a lithium half-cell. Synchrotron X-ray diffraction patterns suggest a single phase HT-LiCoO2 that is isostructural to α-NaFeO2 cannot be formed by aliovalent doping with Mo, V, and Zr. Scanning electron images show that particles are well-crystallized with a size distribution in the range of 1–5 μm. Charge–discharge cycling of the cells indicated first cycle irreversible capacity loss in order of increasing magnitude was Zr (15 mAh g−1), Mo (22 mAh g−1), and V (45 mAh g−1). Prolonged cycling the Mo-doped cell produced the best performance of all dopants with a stable reversible capacity of 120 mAh g−1 after 30 cycles, but was inferior to that of pure LiCoO2.  相似文献   

12.
A three-dimensional macroporous Cu/SnO2 composite anode sheet for lithium ion batteries was prepared via a novel method that is based on selective reduction of metal oxides at appropriate temperatures. SnO2 particles were imbedded on the Cu particles within the three-dimensionally interconnected Cu substrate, and the whole composite sheet was used directly as an electrode without adding extra conductive carbons and binders. Compared with the SnO2-based electrode prepared via the conventional tape-casting method on Cu foil, the porous Cu/SnO2 composite electrode shows significantly improved battery performance. This methodology produces limited wastes and is also adaptable to many other materials. It is a promising approach to make macroporous electrode for Li-ion batteries.  相似文献   

13.
Mesoporous TiO2 was prepared via a sol–gel method from an ethylene glycol-based titanium-precursor in the presence of a non-ionic surfactant at pH 2. Only the anatase structure was detected after annealing, while the BET specific surface area was measured as being 90 m2 g−1 with a rather monomodal pore diameter close to 5 nm. Electrochemical performances were investigated by cyclic voltammetry and galvanostatic techniques. Mesoporous TiO2 exhibits excellent rate capability (184 mAh g−1 at C/5, 158 mAh g−1 at 2C, 127 mAh g−1 at 6C, and 95 mAh g−1 at 30C) and good cycling stability.  相似文献   

14.
In this work we report the investigation of the structural and the electrical properties of orthorhombic LiMnO2 in a wide temperature range in air and in high purity argon (N5). Also we present a correlation between the electrical and the electrochemical properties of the material upon lithium deintercalation. Moreover, its chemical stability against LiPF6 based liquid electrolyte at elevated temperatures was measured and compared with other cathode materials.  相似文献   

15.
In a monolithic photovoltaic-electrolysis system, photovoltaic and catalytic layers are generally constructed on both sides of a conducting substrate. For the realization of this architecture it is critical to fabricate the catalytic layer at sufficiently low temperature in order not to deteriorate the photovoltaic photoanode that is already installed on the reverse side of the catalytic layer. In this study we demonstrate successful fabrication of Co3O4 electrocatalyst films at low temperature (∼50°C) on a stainless steel substrate by a paste coating method using Nafion as a binder. The Co3O4 films were found to be catalytically efficient and stable in water splitting reaction in an alkaline aqueous solution. More importantly, the Co3O4 films casted at low temperature (∼50°C) revealed the highest hydrogen production rate in the electrolytic cell compared to the films prepared at higher temperatures (e.g. 150 and 300°C), which would be very beneficial in the construction of a monolithic photovoltaic-electrolysis system.  相似文献   

16.
A (Ni1/3Co1/3Mn1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 (0 ≤ x ≤ 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 products were highly uniform, having a narrow particle size distribution (10-μm average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathodes.  相似文献   

17.
Spherical shape Cu–Sn alloy powders with fine size for lithium secondary battery were directly prepared by spray pyrolysis. The mean size and geometric standard deviation of the Cu–Sn alloy powders prepared at a temperature of 1100 °C were 0.8 μm and 1.2, respectively. The powders prepared at a temperature of 1100 °C with low flow rate of carrier gas as 5 l min−1 had main XRD peaks of Cu6Sn5 alloy and copper-rich Cu3Sn alloy phases. Cu and Sn components were well dispersed inside the submicron-sized alloy powders. The discharge capacities of the Cu6Sn5 alloy powders prepared at a flow rate of 5 l min−1 dropped from 485 to 313 mAh g−1 by the 20th cycle at a current density of 0.1 C. On the other hand, the discharge capacities of the Cu–Sn alloy powder prepared at a flow rate of 20 l min−1 dropped from 498 to 169 mAh g−1 by the 20th cycle at a current density of 0.1 C.  相似文献   

18.
Non-toxic, cheap, nanostructured ternary transition metal oxide CuFeO2 was synthesised using a simple sol-gel method at different temperatures. The effects of the processing temperature on the particle size and electrochemical performance of the nanostructured CuFeO2 were investigated. The electrochemical results show that the sample synthesised at 650 °C shows the best cycling performance, retaining a specific capacity of 475 mAh g−1 beyond 100 cycles, with a capacity fading of less than 0.33% per cycle. The electrode also exhibits good rate capability in the range of 0.5C-4C. At the high rate of 4C, the reversible capacity of CuFeO2 is around 170 mAh g−1. It is believed that the ternary transition metal oxide CuFeO2 is quite acceptable compared with other high performance nanostructured anode materials.  相似文献   

19.
LiCoO2 particles were coated with various wt.% of lanthanum aluminum garnets (3LaAlO3:Al2O3) by an in situ sol–gel process, followed by calcination at 1123 K for 12 h in air. X-ray diffraction (XRD) patterns confirmed the formation of a 3LaAlO3:Al2O3 compound and the in situ sol–gel process synthesized 3LaAlO3:Al2O3-coated LiCoO2 was a single-phase hexagonal α-NaFeO2-type structure of the core material without any modification. Scanning electron microscope (SEM) images revealed a modification of the surface of the cathode particles. Transmission electron microscope (TEM) images exposed that the surface of the core material was coated with a uniform compact layer of 3LaAlO3:Al2O3, which had an average thickness of 40 nm. Galvanostatic cycling studies demonstrated that the 1.0 wt.% 3LaAlO3:Al2O3-coated LiCoO2 cathode showed excellent cycle stability of 182 cycles, which was much higher than the 38 cycles sustained by the pristine LiCoO2 cathode material when it was charged at 4.4 V.  相似文献   

20.
Al-doped LiMn2O4 cathode materials synthesized by a newly developed wet-milling method and a dry process method using a conventional solid-state reaction were evaluated physicochemically and electrochemically. In the wet-milling method, a precursor was made from the raw materials atomized by a wet milling. A good cyclic performance was obtained for the LiMn2O4 samples prepared by the wet-milling method, achieved up to 99% of retention of capacity at 50 °C at the 30th cycle. The precursor obtained by the wet-milling method was well homogenous and highly reactive due to their finely ground particles, giving good crystallinity to LiMn2O4 products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号