首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite membranes made from Nafion ionomer with nano phosphonic acid-functionalised silica and colloidal silica were prepared and evaluated for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH). The phosphonic acid-functionalised silica additive obtained from a sol–gel process was well incorporated into Nafion membrane. The particle size determined using transmission electron microscope (TEM) had a narrow distribution with an average value of approximately 11 nm and a standard deviation of ±4 nm. The phosphonic acid-functionalised silica additive enhanced proton conductivity and water retention by introducing both acidic groups and porous silica. The proton conductivity of the composite membrane with the acid-functionalised silica was 0.026 S cm−1, 24% higher than that of the unmodified Nafion membrane at 85 °C and 50% RH. Compared with the Nafion membrane, the phosphonic acid-functionalised silica (10% loading level) composite membrane exhibited 60 mV higher fuel cell performance at 1 A cm−2, 95 °C and 35% RH, and 80 mV higher at 0.8 A cm−2, 120 °C and 35% RH. The fuel cell performance of composite membrane made with 6% colloidal silica without acidic group was also higher than unmodified Nafion membrane, however, its performance was lower than the acid-functionalised silica additive composite membrane.  相似文献   

2.
This study examined methanol crossover through PtRu/Nafion composite membranes for the direct methanol fuel cell. For this purpose, 0.03, 0.05 and 0.10 wt% PtRu/Nafion composite membranes were fabricated using a solution impregnation method. The composite membrane was characterized by inductively coupled plasma-mass spectroscopy and thermo-gravimetric analysis. The methanol permeability and proton conductivity of the composite membranes were measured by gas chromatography and impedance spectroscopy, respectively. In addition, the composite membrane performance was evaluated using a single cell test. The proton conductivity of the composite membrane decreased with increasing number of PtRu particles embedded in the pure Nafion membrane, while the level of methanol permeation was retarded. From the results of the single cell test, the maximum performance of the composite membrane was approximately 27% and 31% higher than that of the pure Nafion membrane at an operating temperature of 30 and 45 °C, respectively. The optimum loading of PtRu was determined to be 0.05 wt% PtRu/Nafion composite membrane.The PtRu particles embedded in the Nafion membrane act as a barrier against methanol crossover by the chemical oxidation of methanol on embedded PtRu particles and by reducing the proton conduction pathway.  相似文献   

3.
Proton conducting membranes are the most crucial part of energy generating electrochemical systems such as polymer electrolyte membrane fuel cells (PEMFCs). In this work, Nafion based proton conducting anhydrous composite membranes were prepared via two different approaches. In the first, commercial Nafion115 and Nafion112 were swelled in the concentrated solution of azoles such as 1H-1,2,4-triazole (Tri), 3-amino-1,2,4-triazole (ATri) and 5-aminotetrazole (ATet) as heterocyclic protogenic solvents. In the second, the proton conducting films were cast from the Nafion/Azole solutions. The partial protonation of azoles in the anhydrous membranes were studied by Fourier transform infrared (FT-IR) spectroscopy. Thermal properties were investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results showed that Nafion/ATri and Nafion/ATet electrolytes are thermally stable at least up to 200 °C. Methanol permeability measurements showed that the composite membranes have lower methanol permeability compared to Nafion112. Nafion115/ATri system has better conductivity at 180 °C, exceeding 10−3 S/cm compared to other Nafion/heterocycle systems under anhydrous conditions.  相似文献   

4.
Studies of proton-conductive polymer membranes are vital for the future development of high-performance polymer electrolyte membrane fuel cells (PEM-FC). In particular, a method for inhibiting the volatility of water in the polymer matrix at high temperatures is a crucial issue, directly related to the operation of PEM-FC system. In this study, we focus on polymer composite membranes, which consist of commercial Nafion and mesoporous silica (MPSi) as novel inorganic additives, and investigate an improvement in the total proton conductivities and the good electrochemical stability at high temperatures. MPSi, which can be synthesized with pore sizes from 1 to 10 nm, has a wide range of potential applications because of its extraordinary properties, such as extremely large surface area, flawless surface condition and well-regulated porous structure. We found that the Nafion composites filled with MPSi have approximately 1.5 times higher proton conductivities (more than 0.1 S cm−1 at 80 °C and 95%RH) than pure Nafion and can display good temperature performance relative to pure Nafion and the particle SiO2 composite. Moreover, the conductivity of Nafion/sulfonated MPSi was the highest (0.094 S cm−1) at 40 °C and 95%RH. These are probably due to the large surface area of MPSi, which can increase the water adsorption in Nafion matrix.  相似文献   

5.
A sulfonated polyimide (SPI)/PTFE reinforced membrane was synthesized by impregnating PTFE (porous polytetrafluoroethylene) membrane with a SPI/DMSO solution. The resulting composite membrane was mechanically durable and quite thin relative to traditional perfluorosulfonated ionomer membranes (PFSI). We expect the PTFE to restrict the swelling and dimensional change of the SPI when it is immersed into water. And the reinforcement with PTFE can increase the hydrolysis stability of the SPI due to the low swelling and low dimensional change. From ex-situ testing and a short term fuel cell “life” test, we conclude that the PTFE reinforced sulfonated polyimide had a higher hydrolytic stability than pure sulfonated polyimide. The thin SPI/PTFE membrane showed comparable fuel cell performance with the commercial NRE-212 membrane with H2/O2 at 80 °C under fully humidified conditions. The chemically modified membrane with Nafion layer showed good stability in a 120 h fuel cell test.  相似文献   

6.
A Nafion and polyaniline composite membrane (designated Nafion/PANI) was fabricated using an in situ chemical polymerization method. The composite membrane showed a proton conductivity that was superior to that obtained with Nafion® 112 at low humidity (e.g. RH = 60%). Water uptake measurements revealed similarities between the Nafion® 112 and Nafion/PANI membranes at different humidities. The high conductivity of the Nafion/PANI membrane at low humidity is hypothesized to be due to the existence of the extended conjugated bonds in the polyaniline; proton transfer is facilitated via the conjugated bonds in lower humidity environments allowing retention of the relatively high conductivity. Correspondingly, the performance of a single cell fuel cell containing the Nafion/PANI composite membrane is improved compared to a Nafion® 112-containing cell under low humidity conditions. This is important for portable fuel cells, which are required to operate without external humidification.  相似文献   

7.
Novel Nafion composite proton exchange membranes are prepared using mesoporous MCM-41 silica nanospheres as inorganic fillers. The novelty of this study lies in the structural design of inorganic silica fillers: the nanosized and monodisperse spherical morphology of fillers facilitates the preparation of homogenous composite membranes, whilst the superior water adsorption of the mesostructure in fillers consigns enhanced water retention properties to the polymer membranes. Scanning electron microscopy images of the composite membranes indicate that well-dispersed silica nanospheres are embedded in the Nafion matrix, but a large amount of added fillers (3 wt.%) causes some agglomeration of the nanospheres. Compared with the Nafion cast membrane, the composite membranes offer improved thermal stability, enhanced water retention properties, and reduced methanol crossover. Despite the enhancement of water retention, the composite membranes still exhibit a proton conductivity reduction of 10–40% compared with pristine Nafion. This is likely due to the incorporation of much less conductive silica fillers than Nafion. The composite membrane containing 1 wt.% of fillers displays the best cell performance in direct methanol fuel cell tests; it gives a maximum power density of 21.8 mW cm−2, i.e., ∼20% higher than the Nafion cast membrane. This is attributed to its similar conductivity to Nafion, and its markedly reduced methanol crossover, namely, ∼1.2 times lower.  相似文献   

8.
By immersing Nafion membrane into dopamine aqueous solution under mild conditions, a series of modified Nafion membranes for the application in direct methanol fuel cell (DMFC) were fabricated. High resolution scanning electron microscope and Fourier transform infrared spectra characterization revealed that a dense nano-layer around 50 nm was formed and adhered tightly to Nafion surface. Small-angle X-ray scattering, wide X-ray diffractometer and positron annihilation lifetime spectroscopy analysis implied that the microstructure such as phase-separated structure and ion-cluster channel of Nafion layer was slightly changed after surface modification. The influence of modification conditions including pH value, dopamine concentration and immersing time upon membrane performance was investigated. Due to the effective reduction of methanol dissolution and enhancement of methanol diffusion resistance, the methanol crossover of the modified membranes was dramatically suppressed by about 79% from 3.14 × 10−6 to about 0.65 × 10−6 cm2 s−1. Meanwhile, the proton conductivity of the modified membranes was slightly decreased to be around 0.06 S cm−1. Consequently, the comprehensive performance of the modified membranes was improved by about five times. These results hinted the application promises of such modified Nafion membranes in DMFC.  相似文献   

9.
Methanol crossover through polymer electrolyte membranes represents one of the major problems to be solved in order to improve direct methanol fuel cell (DMFC) performance. With this aim, Nafion/zirconium phosphate (ZrP) composite membranes, with ZrP loading in the range 1-6 wt%, were prepared by casting from mixtures of gels of exfoliated ZrP and Nafion 1100 dispersions in dimethylformamide. These membranes were characterised by methanol permeability, swelling and proton conductivity measurements, as well as by tests in active and passive DMFCs in the temperature range 30-80 °C. Increase in filler loading results in a decrease in both methanol permeability and proton conductivity. As a consequence of the reduced conductivity the power density of active DMFCs decreases with increasing ZrP loading (from 46 to 32 mW cm−2 at 80 °C). However, due to the lower methanol permeability, the room temperature Faraday efficiency of passive DMFCs, with 20 mA cm−2 discharge current, nearly doubles when Nafion 1100 is replaced by the composite membrane containing 4 wt% ZrP.  相似文献   

10.
Nafion 117 membranes were modified by in situ chemical polymerization of 3,4-ethylenedioxythiophene using H2O2 as oxidant for direct methanol fuel cell application. Methanol permeability and proton conductivity of the poly(3,4-ethylenedioxythiophene)-modified Nafion membranes as a function of temperature were investigated. An Arrhenius-type dependency of methanol permeability and proton conductivity on temperature exists for all the modified membranes. Compared with Nafion 117 membrane at 60 °C, the methanol permeability of these modified membranes is reduced from 30% to 72%, while the proton conductivity is decreased from 4% to 58%, respectively. Because of low methanol permeability and adequate proton conductivity, the DMFC performances of these modified membranes were better than that of Nafion 117 membrane. A maximum power density of 48.4 mW cm−2 was obtained for the modified membrane, while under same condition Nafion 117 membrane got 37 mW cm−2.  相似文献   

11.
Low humidification, large air stoichiometry, dry hydrogen and low operational temperature makes open-cathode proton exchange membrane fuel cells (PEMFCs) with forced-air convection, which is designed for portable applications, quite different from that used in automobile vehicles. In this paper, PEMFCs humidified at 30 °C using Nafion 212 and Nafion 211 as electrolytes were systematically investigated under simulating conditions. These conditions included air stoichiometry from 3 to 100 and cell temperature from 30 °C to 60 °C. The results indicate that the thinner membrane (Nafion 211) had better performance and more stable voltage output under air dual-function configuration than Nafion 212. Furthermore, the dynamic response of the voltage with cell temperature was also studied during rising and cooling procedure between 30 °C and 60 °C.  相似文献   

12.
This work investigates the characterization and performance of polyaniline and silica modified Nafion membranes. The aniline monomers are synthesized in situ to form a polyaniline film, whilst silica is embedded into the Nafion matrix by the polycondensation of tetraethylorthosilicate. The physicochemical properties are studied by means of X-ray diffraction and Fourier transform infrared techniques and show that the polyaniline layer is formed on the Nafion surface and improves the structural properties of Nafion in methanol solution. Nafion loses its crystallinity once exposed to water and ethanol, whilst the polyaniline modification allows crystallinity to be maintained under similar conditions. By contrast, the proton conductivities of polyaniline modified membranes are 3–5-fold lower than that of Nafion. On a positive note, methanol crossover is reduced by over two orders of magnitude, as verified by crossover limiting current analysis. The polyaniline modification allows the membrane to become less hydrophilic, which explains the lower proton conductivity. No major advantages are observed by embedding silica into the Nafion matrix. The performance of a membrane electrode assembly (MEA) using commercial catalysts and polyaniline modified membranes in a cell gives a peak power of 8 mW cm−2 at 20 °C with 2 M methanol and air feeding. This performance correlates to half that of MEAs using Nafion, though the membrane modification leads to a robust material that may allow operation at high methanol concentration.  相似文献   

13.
We have demonstrated that a protic ionic liquid, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) functions as a proton conductor and is suitable for use as an electrolyte in H2/O2 fuel cells, which can be operated at temperatures higher than 100 °C under non-humidified conditions. In this study, in order to fabricate a polymer electrolyte fuel cell, matrix polymers for [dema][TfO] are explored and sulfonated polyimides (SPI), in which the sulfonic acid groups are in diethylmethylammonium form, are found to be highly compatible with [dema][TfO]. Polymer electrolyte membranes for non-humidified fuel cells are prepared by the solvent casting method using SPI and [dema][TfO]. The SPI, with an ion exchange capacity of 2.27 meq g−1, can retain four times its own weight of [dema][TfO] and produces uniform, tough, and transparent composite membranes. The composite membranes have good thermal stability (>300 °C) and ionic conductivity (>10−2 S cm−1 at 120 °C when the [dema][TfO] content is higher than 67 wt%) under anhydrous conditions. In the H2/O2 fuel cell operation using a composite membrane without humidification, a current density higher than 240 mA cm−2 is achieved with a maximum power density of 100 mW cm−2 at 80 °C.  相似文献   

14.
A series of novel sulfonated poly(ether ether ketone)s containing a cyanophenyl group (SPEEKCNxx) are prepared based on (4-cyano)phenylhydroquinone via nucleophilic substitution polycondensation reactions. To further improve their properties, novel composite membranes composed of sulfonated poly(ether ether ketone)s containing cyanophenyl group as an acidic component and aminated poly(aryl ether ketone) as a basic component are successfully prepared. Most of the membranes exhibit excellent thermal, oxidative and dimensional stability, low-swelling ratio, high proton conductivity, low methanol permeability and high selectivity. The proton conductivities of the membranes are close to Nafion 117 at room temperature. And especially, the values of SPEEKCN40 and its composite membranes are higher than Nafion 117 at 80 °C (0.17 S cm−1 of Nafion, 0.26 S cm−1 of SPEEKCN40, 0.20 S cm−1 of SPEEKCN40-1, and 0.18 S cm−1 of SPEEKCN40-2). Moreover, the methanol permeability is one order magnitude lower than that of Nafion 117. All the data prove that both copolymers and their composite membranes may be potential proton exchange membrane for fuel cells applications.  相似文献   

15.
Membrane electrode assemblies with Nafion/nanosize titanium silicon dioxide (TiSiO4) composite membranes were manufactured with a novel ultrasonic-spray technique and tested in proton exchange membrane fuel cell (PEMFC). Nafion/TiO2 and Nafion/SiO2 nanocomposite membranes were also fabricated by the same technique and their characteristics and performances in PEMFC were compared with Nafion/TiSiO4 mixed oxide membrane. The composite membranes have been characterized by thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, water uptake, and proton conductivity. The composite membranes gained good thermal resistance with insertion of inorganic oxides. Uniform and homogeneous distribution of inorganic oxides enhanced crystalline character of these membranes. Gas diffusion electrodes (GDE) were fabricated by Ultrasonic Coating Technique. Catalyst loading was 0.4 mg Pt/cm2 for both anode and cathode sides. Fuel cell performances of Nafion/TiSiO4 composite membrane were better than that of other membranes. The power density obtained at 0.5 V at 75 °C was 0.456 W cm−2, 0.547 W cm−2, 0.477 W cm−2 and 0.803 W cm−2 for Nafion, Nafion/TiO2, Nafion/SiO2, and Nafion/TiSiO4 composite membranes, respectively.  相似文献   

16.
Sulfonated Si-MCM-41 (SMCM) with an ion exchange capacity (IEC) of 2.3 mequiv. g−1 was used as a hydrophilic and proton-conductive inorganic component. Sulfonated polyimide (SPI) based on 1,4,5,8-naphthalene tetracarboxylic dianhydride and 2,2′-bis(3-sulfophenoxy) benzidine was used as a host membrane component. The SMCM/SPI hybrid membrane (H1) with 20 wt% loading of SMCM and an IEC of 1.90 mequiv. g−1 showed the high mechanical tensile strength and the slightly higher water vapor sorption than the host SPI membrane (M1) with an IEC of 1.86 mequiv. g−1. H1 and M1 showed anisotropic membrane swelling with about 10 times larger swelling in thickness direction than in plane one. The proton conductivity at 60 °C of H1 was lower in water than that of M1, but comparable at 30% RH. At 90 °C, H1 showed the rather lower performance of polymer electrolyte fuel cell (PEFC) at 82% RH than M1 and fairly better performance at 30% RH. On the other hand, at 110 °C and low humidity less than 50% RH, H1 showed the much better PEFC performance than M1 and Nafion 112. This was due to the promoted back diffusion of produced water by the superior water-holding capacity of SMCM. The SMCM/SPI hybrid membranes have high potential for PEFCs at higher temperatures and lower humidities.  相似文献   

17.
Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H2SO4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm−1 than Chs membranes of 204 s cm−1. The proton fluxes across the membranes were 2.73 mol cm−2 s−1 for Chs- and 1.12 mol cm−2 s−1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10−6 cm2 s−1 for Chs membranes and 3.9 × 10−6 cm2 s−1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm−2 was 2.7 times higher than in the case of Chs MEA.  相似文献   

18.
A novel Pt/zeolite–Nafion (PZN) polymer electrolyte composite membrane is fabricated for self-humidifying polymer electrolyte membrane fuel cells (PEMFCs). A uniform dispersion of Pt nanoparticles with an average size of 3 nm is achieved by ion-exchange of the zeolite HY. The Pt nanoparticles embedded in the membrane provide the catalytic sites for water generation, whereas the zeolite HY-supported Pt particles absorbs water and make it available for humidification during cell operation at elevated temperature. Compared with the performance of ordinary membranes, the performance of cells with PZN membranes is improved significantly under dry conditions. With dry H2 and O2 at 50 °C, the PZN membrane with 0.65 wt.% of Pt/zeolite (0.03 mg Pt cm−2) gives 75% of the performance obtained at 0.6 V with the humidified reactants at 75 °C. Impedance analysis reveales that an increase in charge-transfer resistance is mainly responsible for the cell performance loss operated with dry gases.  相似文献   

19.
Cross-linked miscible blend (CMB) membranes were prepared from sulfonated poly(arylene ether sulfone) (SPAES) and sulfonated polynaphthalimide (SPI). They were transparent and insoluble in solvents. They showed the intermediate properties between SPAES and SPI concerning mechanical strength, water uptake, membrane swelling and proton conductivity. As for membrane swelling and proton conductivity, SPAES was almost isotropic, whereas SPI was highly anisotropic. CMB membranes were moderately anisotropic and had the advantages of the smaller in-plane membrane swelling and the larger through-plane conductivity compared to SPAES and SPI, respectively. Polymer electrolyte fuel cell performance of CMB2 membrane with an equal weight ratio of SPAES/SPI and an ion exchange capacity (IEC) of 1.74 meq g−1 was investigated, compared to SPI membrane (R1) with a slightly higher IEC of 1.86 meq g−1. At 90 °C, 0.1 MPa and relatively high humidification of 82/68% RH or 0.2 MPa and low humidification of 50-30% RH, CMB2 showed the reasonably high cell performances. At 110 °C and 50-33% RH, the cell performance was fairly high only at a high pressure of 0.3 MPa, but low at 0.2-0.15 MPa. At these conditions, the cell performance was better for CMB2 than for R1 due to the more effective back-diffusion of water formed at cathode into membrane. CMB2 showed the fairly high PEFC durability at 110 °C.  相似文献   

20.
In this report, a new nanofiller consisting of silica “cores” bearing fluoroalkyl surface functionalities is synthesized and adopted in the preparation of a series of hybrid inorganic-organic proton conducting membranes based on Nafion. The hybrid materials are obtained by a solvent-casting procedure and include between 0 and 10 wt.% of nanofiller. The resulting systems are extensively characterized by Thermogravimetry (TG), Modulated Differential Scanning Calorimetry (MDSC) and Dynamic Mechanical Analysis (DMA), showing that the hybrid materials are stable up to 240 °C and that their overall thermal and mechanical properties are affected both by the polar groups on the surface of the silica “cores” and by the fluoroalkyl surface functionalities of the nanofiller. The electric properties of the hybrid materials are investigated by broadband dielectric spectroscopy (BDS). It is shown that proton conductivity of the materials is not compromised by the lower water uptake arising from the hydrophobic character of the nanofiller. With respect to a pristine Nafion recast membrane, the hybrid material characterized by 5 wt.% of nanofiller, [Nafion/(Si80F)0.7], shows the highest conductivity in all the investigated temperature range (5 ≤ T ≤ 155 °C). Indeed, [Nafion/(Si80F)0.7] features the lowest water uptake and presents a conductivity of 0.083 S cm−1 at 135 °C. This result is consistent with the good performance of the membrane in single fuel cell tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号