首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanotechnology has recently generated a lot of attention and high expectations not only in the academic community but also among investors, scientists and researchers in both government and industry sectors. Its unique capability to fabricate new structures at the atomic scale has already produced novel materials and devices with great potential applications in a wide number of fields. Up to now, the electrodes in direct methanol fuel cells (DMFCs) have generally been based on the porous carbon gas diffusion electrodes that are employed in proton exchange membrane fuel cells. Typically, the structure of such electrodes is comprised of a catalyst layer and a diffusion layer, the latter being carbon cloth or carbon paper. It is a challenge to develop an electrode with high surface area, good electrical conductivity and suitable porosity to allow good reactant flux and high stability in the fuel cell environment. This paper presents an overview of electrode structure in general and recent material developments, with particular attention paid to the application of nanotechnology in DMFCs.  相似文献   

2.
A three-dimensional (3D), two-phase, isothermal model of direct methanol fuel cells (DMFCs) was employed to investigate effects of electron transport through the backing layer and the land in bipolar plates. It was found that the electronic resistance of the backing layer, affected by backing layer electronic conductivity, backing layer thickness and flow channel width, played a relatively important role in determining the current density distribution and cell performance. In order to ignore the electron transport effect on the average current density, the minimum electronic conductivity of the backing layer has to be 1000 S m−1, with the relative error in the average current density less than 5%, under the given conditions.  相似文献   

3.
Regulating methanol feed concentration in direct methanol fuel cells (DMFCs) is important for improving electrical performance and fuel utilization. Low methanol concentration reduces the reaction rate at the anode due to Nernstian effects resulting in a lower operating voltage. However, simply increasing the methanol concentration does not always lead to improved performance due to increased methanol crossover from the anode to the cathode resulting in mixed-potential losses and the associated fuel loss. Hence, there exists an optimal intermediate value of methanol concentration for each current density that will yield the highest electrical performance (V). In this paper, we describe the development of an in situ methodology which uses the measured cell voltage as the feedback to regulate the methanol feed concentration for maximum power density. This methodology is demonstrated at the current densities of 50, 100, and 250 mA cm−2and the results for optimal concentration are presented. Fuel loss as a function of methanol concentration is evaluated by oxidizing the crossover methanol at the cathode exhaust and measuring the CO2 mass flux.  相似文献   

4.
We report an algorithm for real-time control of the fuel of a DMFC. The MEA voltage decay coefficients [e1, e2], and I-V-T, M′-I-T, and W′-I-T curves (where I is the current, V the voltage, T the temperature, and M′ and W′ the methanol and water consumption rates, respectively) of n fuels with specified methanol concentrations CM,k (k = 1, 2,…, n) are pre-established and form (I,V,T), (M′,I,T), and (W′,I,T) surfaces for each CM,k. The in situ measured (I,V,T)u after voltage decay correction is applied to the n preset (I,V,T) surfaces to estimate CM,u (the CM corresponding to (I,V,T)u) using an interpolation procedure. The CM,u is then applied to the n preset (M′,I,T) and (W′,I,T) surfaces to estimate cumulated “methanol” and “water” consumed quantities . Thus in a real-time system, the CM and total quantity of fuel can be controlled using the estimated CM,u and cumulated “methanol” and “water” consumed quantities.  相似文献   

5.
Consumers’ demand for portable audio/video/ICT products has driven the development of advanced power technologies in recent years. Fuel cells are a clean technology with low emissions levels, suitable for operation with renewable fuels and capable, in a next future, of replacing conventional power systems meeting the targets of the Kyoto Protocol for a society based on sustainable energy systems. Within such a perspective, the objective of the European project MOREPOWER (compact direct methanol fuel cells for portable applications) is the development of a low-cost, low temperature, portable direct methanol fuel cell (DMFC; nominal power 250 W) with compact construction and modular design for the potential market area of weather stations, medical devices, signal units, gas sensors and security cameras. This investigation is focused on a conceptual study of the DMFC system carried out in the Matlab/Simulink® platform: the proposed scheme arrangements lead to a simple equipment architecture and a efficient process.  相似文献   

6.
Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm−2. The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W−1, and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.  相似文献   

7.
The influences of various operating conditions on the current distribution of a direct methanol fuel cell with flow-fields of serpentine channels are investigated by means of a current-mapping method. The current densities generally deviate more from an even distribution when the cell temperature or flow rate of the cathode reactant is lower, or when the current loaded on the cell or the methanol concentration is higher. In addition, uneven current distributions decrease the cell performance. Relevant mass-transfer phenomena such as water flooding and methanol crossover are discussed. The characteristics of the channel configuration also affect the current density profiles. With a five-line serpentine channel, the current densities are lowered periodically where the flow direction is inverted due to the corner flow effect and the subsequent water accumulation. With a single serpentine channel, on the other hand, the current densities peak periodically where the flow direction is inverted due to enhanced air convection through the gas-diffusion layer.  相似文献   

8.
Water management is an important challenge in portable direct methanol fuel cells. Reducing the water and methanol loss from the anode to the cathode enables the use of highly concentrated methanol solutions to achieve enhanced performances. In this work, the results of a simulation study using a previous developed model for DMFCs are presented. Particular attention is devoted to the water distribution across the cell. The influence of different parameters (such as the cathode relative humidity (RH), the methanol concentration and the membrane, catalyst layer and diffusion media thicknesses) over the water transport and on the cell performance is studied. The analytical solutions of the net water transport coefficient, for different values of the cathode relative humidity are successfully compared with recent published experimental data putting in evidence that humidified cathodes contribute to a decrease on the water crossover. As a result of the modelling results, a tailored MEA build-up with the common available commercial materials is proposed to achieve low methanol and water crossover and high power density, operating at relatively high methanol concentrations. A thick anode catalyst layer to promote methanol oxidation, a thin anode gas diffusion layer as methanol carrier to the catalyst layer and a thin polymer membrane to lower the water crossover coefficient between the anode and cathode are suggested.  相似文献   

9.
A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.  相似文献   

10.
The bipolar plate/current collector plays an important role in direct methanol fuel cells (DMFC). A current collector with different geometries could have a significant influence on cell performance. This paper presents fractal geometry application to current collector design in a direct methanol fuel cell (DMFC). This new current collector design is named CCFG (Current Collectors with Fractal Geometry). This research determined how to make a better free open design for the current collector on a printed circuit board based DMFC. The results show that both the free area ratio and total holes perimeter length on the bipolar plate affect the cell performance. The total number of holes on the perimeter presents greater effects than the free open ratio. The cell performance is more sensitive using a cathode current collector than the anode current collector.  相似文献   

11.
The direct methanol fuel cell (DMFC) is a better alternative to the conventional battery. The DMFC offers several advantages, namely, faster building of potential and longer-lasting fuel, however, there are still several issues that need to be addressed to design a better DMFC system. This article is a wide-ranging review of the most up-to-date studies on mass and heat transfer in the DMFC. The discussion will be focused on the critical problems limiting the performance of DMFCs. In addition, a technique for upgrading the DMFC with an integrated system will be presented, along with existing numerical models for modeling mass and heat transfer as well as cell performance.  相似文献   

12.
In the present work, a detailed characterization of the electrochemical behavior of carbon supported Pd-Pt electrocatalysts toward CO and methanol electrooxidation in direct methanol fuel cells is reported. Technical electrodes containing an ionomer in their catalyst layer were prepared for this purpose. CO and methanol electrooxidation reactions were used as test reactions to compare the electrocatalytic behavior of bimetallic supported nanoparticles in acidic liquid electrolyte and in solid polymer electrolyte (real fuel cell operating conditions). Experimental results in both environments are consistent and show that the electrochemical behavior of carbon supported Pd-Pt depends on their composition, giving the best performance in direct methanol single fuel cell with a Pd:Pt atomic ratio of 25:75 in the catalyst.  相似文献   

13.
To achieve the maximum performance from a Direct Methanol Fuel Cell (DMFC), one must not only investigate the materials and configuration of the MEA layers, but also consider alternative cell geometries that produce a higher instantaneous power while occupying the same cell volume. In this work, a two-dimensional, two-phase, non-isothermal model was developed to investigate the steady-state performance and design characteristics of a tubular-shaped, passive DMFC. Under certain geometric conditions, it was found that a tubular DMFC can produce a higher instantaneous Volumetric Power Density than a planar DMFC. Increasing the ambient temperature from 20 to 40 °C increases the peak power density produced by the fuel cell by 11.3 mW cm−2 with 1 M, 16.3 mW cm−2 with 2 M, but by only 8.4 mW cm−2 with 3 M methanol. The poor performance with 3 M methanol at a higher ambient temperature is caused by increased methanol crossover and significant oxygen depletion along the Cathode Transport Layer (CTL). For a 5 cm long tubular DMFC to maintain sufficient Oxygen transport, the thickness of the CTL must be greater than 1 mm for 1 M operation, greater than 5 mm for 2 M operation, and greater than 10 mm for 3 M or higher operation.  相似文献   

14.
A membrane electrode assembly (MEA) based on a Nafion 115 membrane shows a 29% loss in power density after continuous testing in a single direct methanol fuel cell for 1000 h at 50 °C. One of the main reasons for this behaviour is a deterioration of the membrane, namely, its ion-exchange capacity is reduced by 17%. The thermal decomposition behaviour of an untested and degraded membrane is studied by evolved gas analysis-mass spectrometry, pyrolysis-gas chromatography-mass spectrometry, thermo-gravimetric analysis, differential scanning calorimetry, and in situ FTIR reflectance absorption spectra. The results reveal a decrease in thermal stability of the degraded membrane. The Nafion 115 membrane is suggested to lose ion-exchange capacity after the sulfonic acid group is transformed to a thermally less-stable group, such as the persulfonic acid -SO2OOH group during MEA operation. The structural changes may prevent the formation of ionic clusters.  相似文献   

15.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

16.
Current collectors of the direct methanol fuel cell (DMFC) are of significant importance for portable power sources, and greatly determine the weight energy density and cost of the cell. In this paper, the air-breathing aluminum (Al) current collectors have been developed for powering portable applications. The anode and cathode current collectors with the area of 4.5 cm2 were fabricated on the Al substrates utilizing Computer Numerical Control (CNC) technology. To obtain strong anti-corrosion resistance, a 3-μm-Au layer was deposited on the current collectors using chemical plating. Compared with the graphite and stainless steel, the characterization of the Au-coated Al current collector was investigated to exhibit superior characteristics in electric conductivity, weight and electrochemical corrosion resistance. The current collector was applied to a DMFC and the cell performance was experimentally investigated under different operating conditions. The measured maximum power density of the DMFC could reach 19.8 mW cm−2 at current density of 98 mA cm−2 with 2 M methanol solutions. The results indicated that the Au-coated Al current collectors presented in this paper might be helpful for the development of portable power sources applied in future commercial applications.  相似文献   

17.
A cell network consists of a combination of fuel cells to achieve the targeted power consumption for a specific application. The main objective of this study is to design and optimise direct methanol fuel cell (DMFC) via cell integrated network model targeted for small portable application, such as cell phones and tablets. The target current and voltage was 1400 mA and 3.7 V, respectively, for a 5.18 W of cell network power. The optimisation was performed using 16 cells that were arranged in series with a voltage output of 3.781 V and a current of 1400 mA. The overall active area for the cell network was 128 cm2, and the cost of 1 set of cell networks is USD 1400.  相似文献   

18.
The current collector or bi-polar plate is a key component in direct methanol fuel cells (DMFCs). Current collector geometric designs have significant influence on cell performance. This paper presents a continuous type fractal geometry using the Hilbert curve applied to current collector design in a direct methanol fuel cell. The Hilbert curve fractal geometry current collector is named HFCC (Hilbert curve fractal current collector). This research designs the current collector using a first, second and third order open carved HFCC shape. The cell performances of the different current collector geometries were measured and compared. Two important factors, the free open ratio and total perimeter length of the open carved design are discussed. The results show that both the larger free open ratio and longer carved open perimeter length present higher performance.  相似文献   

19.
The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm−2 at current density of 60 mA cm−2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.  相似文献   

20.
The durability of polyol-synthesized PtRu/C as anode electrocatalyst for direct methanol fuel cells (DMFCs) has been studied by conducting a 2020-h life-test of a single cell discharging at a constant current density of 100 mA cm−2. Critical fuel cell performance parameters including anode activity, cathode activity and internal resistance are, for the first time, systematically examined at the life-test time of 556, 1093, 1630 and 2020 h. High-resolution transmission electron microscopy and X-ray diffraction (XRD) have also been performed and show that PtRu nanoparticles have agglomerated with the mean particle size increasing from 1.82 to 2.78 nm after the 2020-h life-test. Anode polarization and electrochemical impedance spectroscopy (EIS) show that there exists a stable discharging period where the anode polarization potential is less than 0.363 V versus dynamic hydrogen electrode (DHE). When the anode polarization potential exceeds 0.363 V versus DHE, the performance of the anode degrades dramatically due to the leaching of the unalloyed Ru as indicated by energy dispersive X-ray spectroscopy (EDS) and XRD. This finding provides clues in developing strategies to operate fuel cells achieving maximum lifetime without noticeable performance lose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号