首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrochemical behavior of a high Cr and Ni austenitic stainless steel (HCN) is investigated and 316L SS in a simulated proton exchange membrane fuel cell environments is also investigated, and interfacial contact resistance (ICR) is measured before and after potentiostatic polarization. Both stainless steels underwent passivation in both anode and cathode environments for proton exchange membrane fuel cell. Passive current density of HCN is lower than that of 316L SS. An increase in ICR between carbon paper and HCN results from passive film formed during the potentiostatic polarization.  相似文献   

2.
Austenitic stainless steel (AISI 316L) is nitrided by inductively coupled plasma using a gas mixture of N2 and H2 at temperatures between 530 K and 650 K, and the corrosion resistance as well as the interfacial contact resistance (ICR) are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment.After plasma nitriding, a nitrogen-expanded austenite layer, the so-called S-phase is formed in all nitrided samples. The ICR value of the nitrided samples decreases to approximately 10 mΩcm2 after plasma nitriding. The sample nitrided at 590 K shows the best corrosion property, while the corrosion resistance of the sample nitrided at higher temperatures decreases because of the formation of Cr-depleted regions in the nitrided sample. By using high-density plasma, the process temperature can be reduced to such a low temperature that Cr depletion is not significant, but a dense S-phase is formed.  相似文献   

3.
Stainless steel bipolar plates for the polymer electrolyte membrane (PEM) fuel cell offer many advantages over conventional machined graphite. Austenitic stainless steel 316L is a traditional candidate for metal bipolar plates. However, the interfacial ohmic loss across the metallic bipolar plate and membrane electrode assembly due to corrosion increases the overall power output of PEMFC. Plasma nitriding was applied to improve the surface performance of 316L bipolar plates. A dense γNγN phase layer was formed on the surface. Polarization curves in the solution simulating PEMFC environment and interfacial contact resistance were measured. The results show that the corrosion resistance is improved and the interfacial contact resistance (ICR) is decreased after plasma nitriding. In comparison with the untreated 316L, the ICR between the carbon paper and passive film for the plasma-nitrided 316L decreases at the same condition and lowers with increasing pH value.  相似文献   

4.
Chromium nitride/Cr coating has been deposited on surface of 316L stainless steel to improve conductivity and corrosion resistance by physical vapor deposition (PVD) technology. Electrochemical behaviors of the chromium nitride/Cr coated 316L stainless steel are investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environments, and interfacial contact resistance (ICR) are measured before and after potentiostatic polarization at anodic and cathodic operation potentials for PEMFC. The chromium nitride/Cr coated 316L stainless steel exhibits improved corrosion resistance and better stability of passive film either in the simulated anodic or cathodic environment. In comparison to 316L stainless steel with air-formed oxide film, the ICR between the chromium nitride/Cr coated 316L stainless steel and carbon paper is about 30 mΩ cm2 that is about one-third of bare 316L stainless steel at the compaction force of 150 N cm−2. Even stable passive films are formed in the simulated PEMFC environments after potentiostatic polarization, the ICR of the chromium nitride/Cr coated 316L stainless steel increases slightly in the range of measured compaction force. The excellent performance of the chromium nitride/Cr coated 316L stainless steel is attributed to inherent characters. The chromium nitride/Cr coated 316L stainless steel is a promising material using as bipolar plate for PEMFC.  相似文献   

5.
The effect of hydrogen on the passivation behavior and electrochemical characteristics of selective laser melted (SLMed) 316L stainless steel in a simulated anode environment for a proton exchange membrane water electrolyzer (PEMWE) was studied. The results indicate that hydrogen charged into the sample increased the ratio of superficial Fe2+/Fe3+ and OH/O2−, increased the concentration of point defects, reduced the film thickness, and weakened its protective effect. The film near 0.6 VSCE showed n-type semiconductor behavior. Hydrogen charging resulted in a higher defect density and thinner space charge layer in the film, which promoted the invasion of aggressive ions.  相似文献   

6.
To investigate the applicability of high nitrogen (HN) austenitic stainless steel as bipolar plates for proton exchange membrane fuel cells (PEFCs), the polarization tests were carried out in synthetic solutions (0.05 M SO42− (pHs 2.3, 4.3 and 5.5) +2 ppm F) at 353 K. Interfacial contact resistance between the stainless steel and gas diffusion layer was measured before and after polarization. A single cell employing the HN stainless steel as bipolar plates was operated for 1000 h at 0.5 A cm−2 (12.5 A). The single cell exhibited voltage drop of 17 mV during the operation. Corrosion products were scarcely detected for the HN stainless steel bipolar plate, as confirmed by scanning electron microscopy. After the polarization tests and single cell operation, XPS analyses were carried out to examine the resulting surface states. In the synthetic solutions to pH 4.3, the passive films mainly consisted of oxides enriched with Cr. When the solution pH was 5.5, on the other hand, the films were mainly composed of Fe-oxides. After the single cell operation for 1000 h, it was found that the passive films of the rib surface for the gas inlet part was mainly composed by Fe-oxides. On the other hand, the passive films for the ribs from center to gas outlet part were mainly made up of Cr-oxides. By combining the simulated and real operation environments, it is believed that the corrosion resistive Cr-oxides passive layer of the HN stainless steel obtained by the presence of nitrogen incorporated into the stainless steel could contribute to the maintenance of the higher cell voltage during the extensive cell operation.  相似文献   

7.
Proton exchange membrane fuel cell (PEMFC) has attracted considerable interest because of its superb performance, and many researches are focused on the development of high-performance, long-life bipolar plates. Stainless steel bipolar plates offer many advantages over the conventional graphite bipolar plates, such as low material and fabrication cost, excellent mechanical behaviour and ease of mass production. However, the insufficient corrosion resistance and relatively high interfacial contact resistance (ICR) become the major obstacles to the widespread use of stainless steel bipolar plates. In this work, active screen plasma nitriding (ASPN), a novel plasma nitriding technique, was used to modify the surface of 316 austenitic stainless steel. A variety of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), glow discharge optical emission spectrometer (GDOES), were employed to characterize the nitrided samples. The results reveal that a nitrogen supersaturated S-phase layer has been successfully produced on the surface of all nitrided 316 stainless steel samples. The interfacial contact resistance (ICR) value can be decreased dramatically after ASPN treatment and the corrosion resistance can also been improved. In addition, better corrosion resistance can be achieved by active screen plasma nitriding with a stainless steel screen than with a carbon steel screen. This technique could be used to improve the performance and lifespan of bipolar plates for fuel cells.  相似文献   

8.
A molybdenum nitride diffusion coating has been prepared on the surface of AISI 304 stainless steel (304 SS) by plasma surface diffusion alloying method as bipolar plate for proton exchange membrane fuel cell (PEMFC). X-ray diffraction data shows that the molybdenum nitride is face-centered-cubic Mo2N phase. The results of scanning electron microscopy in combination with energy-dispersive X-ray analysis spectrometer indicate that the as-prepared molybdenum nitride diffusion coating consists of a ∼3.5 μm surface layer (molybdenum nitride) and a ∼0.5 μm subsurface layer (Mo and N solid solution). In addition, the average contact angle with water for modified 304 SS is 91°, demonstrating the better hydrophobic property of the surface modified 304 SS as compared to the untreated ones with average contact angle of 68°. Potentiodynamic and potentiostatic testing in simulated PEFMC operating conditions (0.05 M H2SO4 + 2 ppm F solution at 70 °C purged with either hydrogen or air) as well as interfacial contact resistance (ICR) measurement imply that the molybdenum nitride modified 304 SS exhibits improved corrosion resistance and promising ICR.  相似文献   

9.
In order to reduce the cost, volume and weight of the bipolar plates used in the proton exchange membrane fuel cells (PEMFC), more attention is being paid to metallic materials, among which 316L stainless steel (SS316L) is quite attractive. In this study, metallic Ta is deposited on SS316L using physical vapor deposition (PVD) to enhance the corrosion resistance of the bipolar plates. Simulative working environment of PEMFC is applied for testing the corrosion property of uncoated and Ta-coated SS316L. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods (potentiodynamic and potentiostatic polarization) are also used for analyzing characteristics of uncoated and Ta-coated SS316L. Results show that, Ta-coated SS316L has significantly better anticorrosion property than that of uncoated SS316L, with corrosion current densities of uncoated SS316L being 44.61 μA cm−2 versus 9.25 μA cm−2 for Ta-coated SS316L, a decrease of about 5 times. Moreover, corrosion current densities of Ta-coated SS316L in both simulative anode (purged with H2) and cathode (purged with air) conditions are smaller than those of uncoated SS316L.  相似文献   

10.
In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology.  相似文献   

11.
Stainless steel is a potential material to be used as the bipolar plate for proton exchange membrane fuel cell (PEFC) because of its suitable physical and mechanical properties. Several coating techniques have been applied to improve its corrosion resistance. But seldom study is focused on the microstructure evolution with corrosion. In the present study, the use of TiN-coated stainless steel as the bipolar plate is evaluated. Two surface coating techniques, pulsed bias arc ion plating (PBAIP) and magnetron sputtering (MS), are adoped to prepare the TiN-coated stainless steel. Their corrosion resistances and electrical conductivities of the coated substrates are evaluated. The performance shows strong dependance on microstructural characteristics. The corrosion of SS304/Ti2N/TiN prepared by MS mainly occurs on the grain boundary. The corrosion of SS304/TiN prepared by PBAIP mainly takes place from the large particles on the coating. The Ti2N/TiN multilayer coating provides superb corrosion protective layer for stainless steel. Both the TiN and Ti2N/TiN coatings provide low contact resistance.  相似文献   

12.
In order to determine the suitability of SS316L as a bipolar plate material in proton exchange membrane fuel cells (PEMFCs), its corrosion behavior is studied under different simulated PEMFC cathode corrosion conditions. Solutions of 1 × 10−5 M H2SO4 with a wide range of different F concentrations at 70 °C bubbled with air are used to simulate the PEMFC cathode environment. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to study the corrosion behavior. Scanning electron microscopy (SEM) is used to examine the surface morphology of the specimen after it is potentiostatic polarized under simulated PEMFC cathode environments. Auger electron spectroscopy (AES) analysis is used to identify the composition and the depth profile of the passive film formed on the SS316L surface after it is polarized in simulated PEMFC cathode environments. Photo-electrochemical (PEC) method and capacitance measurements are used to characterize the semiconductor passive films. The results of both the potentiodynamic and potentiostatic analyses show that corrosion currents increase with F concentrations. SEM examination results indicate that pitting occurs under all the conditions studied and pitting is more severe with higher F concentrations. From the results of AES analysis, PEC analysis and the capacitance measurements, it is determined that the passive film formed on SS316L is a bi-layer semiconductor, similar to a p-n heterojunction consisting of an external n-type iron oxide rich semiconductor layer (electrolyte side) and an internal p-type iron-chromium oxide semiconductor layer (metal side). Further analyses of the experimental results reveal the electronic structure of the passive film and shed light on the corrosion mechanisms of SS316L in the PEMFC cathode environment.  相似文献   

13.
Pulsed bias arc ion plating was used to form Cr-nitride films on stainless steel as bipolar plate of proton exchange membrane fuel cell. Surface micrograph, film thickness, film composition, corrosion resistance, interfacial conductivity and contact angle with water of the sample obtained at the optimal flow rate of N2 were investigated. The atomic ratio of Cr to N was close to 2:1 and the CrN phase with crystal planes of (111), (200), (220) and (311) was found in the film. Potentiodynamic and potentiostatic tests showed that the corrosion resistance of the bipolar plate sample was greatly enhanced. The contact resistance between the bipolar plate sample and Toray carbon paper was about two orders of magnitude lower than that of 316L stainless steel. The contact angle of the sample with water was 95°, which is beneficial for water management in fuel cells.  相似文献   

14.
Superior corrosion resistance and high electrical conductivity are crucial to the metallic bipolar plates towards a wider application in proton exchange membrane fuel cells. In this work, molybdenum carbide coatings are deposited in different thicknesses onto the surface of 316 L stainless steel by magnetron sputtering, and their feasibility as bipolar plates is investigated. The microstructure characterization confirms a homogenous, compact and defectless surface for the coatings. The anti-corrosion performance improves with the increase of the coating thickness by careful analysis of the potentiodynamic and potentiostatic data. With the adoption of a thin chromium transition layer and coating of a ∼1052 nm thick molybdenum carbide, an excellent corrosion current density of 0.23 μA cm−2 is achieved, being approximately 3 orders of magnitude lower than that of the bare stainless steel. The coated samples also show a low interfacial contact resistance down to 6.5 mΩ cm2 in contrast to 60 mΩ cm2 for the uncoated ones. Additionally, the hydrophobic property of the coatings’ surface is beneficial for the removal of liquid water during fuel cell operation. The results suggest that the molybdenum carbide coated stainless steel is a promising candidate for the bipolar plates.  相似文献   

15.
The effects of temperature on corrosion behavior, wettability, and surface conductivity of 304 stainless steel (SS304) in simulated cathode environment of proton exchange membrane fuel cells (PEMFC) are investigated systematically using electrochemical tests and surface analyses. The results indicate that although the corrosion resistance of SS304 is decreased with the rising of solution temperature, the current density of SS304 at the working potential in the simulated PEMFC cathode environment can still meet the 2025 U.S. Department of Energy (DOE) technical target (icorr < 1 μA cm?2). Meanwhile, the surface wettability and ICR of SS304 samples after potentiostatic polarization show a continuous increase with the rise of the simulated solution temperature. The surface conductivity of SS304 both before and after polarization cannot reach the 2025 DOE technical target (<0.01 Ω cm2) and needs to be improved by surface modification.  相似文献   

16.
A nickel-rich layer about 100 μm in thickness with improved conductivity was formed on the surface of austenitic stainless steel 316L (SS316L) by ion implantation. The effect of ion implantation on the corrosion behavior of SS316L was investigated in 0.5 M H2SO4 with 2 ppm HF solution at 80 °C by potentiodynamic test. In order to investigate the chemical stability of the ion implanted SS316L, the potentiostatic test was conducted in an accelerated cathode environment and the solutions after the potentiostatic test were analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES). The results of potentiodynamic test show that the corrosion potential of SS316L is shifted toward the positive direction from −0.3 V versus SCE to −0.05 V versus SCE in anode environment and the passivation current density at 0.6 V is reduced from 11.26 to 7.00 μA cm−2 in the cathode environment with an ion implantation dose of 3 × 1017 ions cm−2. The potentiostatic test results indicate that the nickel implanted SS316L has higher chemical stability in the accelerated cathode environment than the bare SS316L, due to the increased amount of metallic Ni in the passive layer. The ICP results are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni implantation markedly reduces the dissolution rate. A significant improvement of interfacial contact resistance (ICR) is achieved for the SS316L implanted with nickel as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by the nickel implantation. The ICR values for implanted specimens increase with increasing dose.  相似文献   

17.
Low temperature plasma nitriding is developed to meet the requirements for corrosion resistance and interfacial contact resistance (ICR) of stainless steel 304L as the bipolar plate for PEMFC. A dense and supersaturated‐nitrogen nitrided layer has formed on the surface of the stainless steel 304L. Electrochemical behavior for the untreated and plasma‐nitrided 304L was measured in H2SO4 (pH=1–5)+2 ppm F? simulating PEMFC environment, and the ICR was evaluated before and after corrosion tests. The experimental results have shown that the ICR for the plasma nitrided 304L is lower than the requirement of U.S. DOE (<10 mΩ cm2 to 2010). Corrosion resistance and the ICR at the compaction force of 150–200 N cm?2 increase with increasing pH value for the untreated and plasma‐nitrided 304L. The passive current densities for the untreated and plasma‐nitrided 304L are all lower than 16 µA cm?2. The ICR between passive film and carbon paper are increased markedly because of passive film formed on the surface of both studied 304L. However, the passive current density and the ICR are lower for the plasma nitrided 304L than those for the untreated one at the given pH value, which results from the different composition of the stable passive film formed on the surface. The low temperature plasma nitriding provides a promising method for 304L using as bipolar plate for PEMFC. Further research is needed to evaluate the long‐term stability of passive film and the performance of single fuel cell. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A series of chromium nitride films are prepared on stainless steel substrates by pulsed bias arc ion plating (PBAIP) at different N2 flow rate as bipolar plates for proton exchange membrane fuel cell (PEMFC). The film chemical composition and phase structure are characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD). The characterization results indicate that the nitrogen content of deposited films varies from 0.28 to 0.50, and the phase structure changes from mixtures of Cr + Cr2N, pure Cr2N through Cr2N + CrN, to pure CrN. The interfacial contact resistance between samples and carbon paper is measured by Wang's method, and a minimum value of 5.8 mΩ cm2 is obtained under 1.2 MPa compaction force. The anticorrosion property is examined by potentiodynamic test in the simulated corrosive circumstance of the PEMFC under 25 °C, and the lowest corrosive current density of 5.9 × 10−7 A cm−2 is obtained at 0.6 V (vs. SCE). Stainless steel substrates coated by the film with lowest contact resistance are chosen as the bipolar plates to assemble cells. An average voltage value of 0.62 V is achieved at 500 mA cm−2, which is close to that of the cell with Ag-plated bipolar plates.  相似文献   

19.
Among the different coatings developed for proton exchange membrane fuel cell steel bipolar plate, nitride-based coatings present several advantages compared to gold or polymeric coating: high chemical stability, low interfacial contact resistance and reasonable cost. In this work, 50 nm thick chromium nitride coatings are deposited by reactive magnetron sputtering on 316L stainless steel foil. They are optimized to fulfill the Department of Energy targets in terms of interfacial contact resistance (ICR) and corrosion resistance, with values of 8.4 mΩ cm−2 (at 100 N cm−2) and 0.10 μA cm−2 (in 0.6 M H2SO4 solution at 0.48 Vvs. SCE potential) respectively. Moreover, they retain their excellent properties after high deformation (biaxial deformation of 20% in x-axis and 5% in y-axis), giving the possibility to achieve, in line, the stamping of a bipolar plate from a coated foil. The etching of the substrate, prior to the coating deposition, appears to be determinant to obtain low and stable corrosion current and ICR. The removing of interfacial oxyde leads to better coating adhesion and improves the corrosion resistance and electrical conductivity. The enhancement of the properties (low ICR and high corrosion resistance) is durable, with no signicant change of the ICR value up to 200 days after deposition.  相似文献   

20.
Carbon film-coated stainless steel (CFCSS) has been evaluated as a low-cost and small-volume substitute for graphite bipolar plate in polymer electrolyte membrane fuel cell (PEMFC). In the present work, AISI 304 stainless steel (304SS) plate was coated with nickel layer to catalyze carbon deposits at 680°C under C2H2/H2 mixed gas atmosphere. Surface morphologies of carbon deposits exhibited strong dependence on the concentration of carbonaceous gas and a continuous carbon film with compact structure was obtained at 680 °C under C2H2/H2 mixed gas ratio of 0.45. Systematic analyses indicated that the carbon film was composed of a highly ordered graphite layer and a surface layer with disarranged graphite structure. Both corrosion endurance tests and PEMFC operations showed that the carbon film revealed excellent chemical stability similar to high-purity graphite plate, which successfully protected 304SS substrate against the corrosive environment in PEMFC. We therefore predict CFCSS plates may practically replace commercial graphite plates in the application of PEMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号