首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high voltage layered Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material, which is a solid solution between Li2MnO3 and LiMn0.4Ni0.4Co0.2O2, has been synthesized by co-precipitation method followed by high temperature annealing at 900 °C. XRD and SEM characterizations proved that the as prepared powder is constituted of small and homogenous particles (100-300 nm), which are seen to enhance the material rate capability. After the initial decay, no obvious capacity fading was observed when cycling the material at different rates. Steady-state reversible capacities of 220 mAh g−1 at 0.2C, 190 mAh g−1 at 1C, 155 mAh g−1 at 5C and 110 mAh g−1 at 20C were achieved in long-term cycle tests within the voltage cutoff limits of 2.5 and 4.8 V at 20 °C.  相似文献   

2.
A nanocrystalline Li4Ti5O12-TiO2 duplex phase has been synthesized by a simple basic molten salt process (BMSP) using an eutectic mixture of LiNO3-LiOH-Li2O2 at 400-500 °C. The microstructure and morphology of the Li4Ti5O12-TiO2 product are characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The sample prepared by heat-treating at 300 °C for 3 h (S-1) reveals dense agglomerates of ultra-fine nanocrystalline Li4Ti5O12; with heat treatment at 400 °C for 3 h (S-2), there is a duplex crystallite size (fine < 10 nm, and coarse > 20 nm) of Li4Ti5O12-TiO2; at 500 °C for 3 h (S-3), a much coarser and less-dense distribution of lithium titanate (crystallite size ∼15-30 nm) is observed. According to the results of electrochemical testing, the S-2 sample shows initial discharge capacities of 193 mAh g−1 at 0.2 C, 168 mAh g−1 at 0.5 C, 146 mAh g−1 at 1 C, 135 mAh g−1 at 2 C, and 117 mAh g−1 at 5 C. After 100 cycles, the discharge capacity is 138 mAh g−1 at 1 C with a capacity retention of 95%. The S-2 sample yields the best electrochemical performance in terms of charge-discharge capacity and rate capability compared with other samples. Its superior electrochemical performance can be mainly attributed to the duplex crystallite structure, composed of fine (<10 nm) and coarse (>20) nm nanoparticles, where lithium ions can be stored within the grain boundary interfaces between the spinel Li4Ti5O12 and the anatase TiO2.  相似文献   

3.
Li2FeSiO4/C cathodes were synthesized by combination of wet-process method and solid-state reaction at high temperature, and effects of roasting temperature and modification on properties of the Li2FeSiO4/C cathode were investigated. The XRD patterns of the Li2FeSiO4/C samples indicate that all the samples are of good crystallinity, and a little Fe3O4 impurity was observed in them. The primary particle size rises as the roasting temperature increases from 600 to 750 °C. The Li2FeSiO4/C sample synthesized at 650 °C has good electrochemical performances with an initial discharge capacity of 144.9 mAh g−1 and the discharge capacity remains 136.5 mAh g−1 after 10 cycles. The performance of Li2FeSiO4/C cathode is further improved by modification of Ni substitution. The Li2Fe0.9Ni0.1SiO4/C composite cathode has an initial discharge capacity of 160.1 mAh g−1, and the discharge capacity remains 153.9 mAh g−1 after 10 cycles. The diffusion coefficient of lithium in Li2FeSiO4/C is 1.38 × 10−12 cm2 s−1 while that in Li2Fe0.9Ni0.1SiO4/C reaches 3.34 × 10−12 cm2 s−1.  相似文献   

4.
Indium oxide (In2O3) coating on Pt, as an electrode of thin film lithium battery was carried out by using cathodic electrochemical synthesis in In2(SO4)3 aqueous solution and subsequently annealing at 400 °C. The coated specimens were characterized by X-ray photoelectron spectroscopy (XPS) for chemical bonding, X-ray diffraction (XRD) for crystal structure, scanning electron microscopy (SEM) for surface morphology, cyclic voltammetry (CV) for electrochemical properties, and charging/discharging test for capacity variations. The In2O3 coating film composed of nano-sized particles about 40 nm revealing porous structure was used as the anode of a lithium battery. During discharging, six lithium ions were firstly reacted with In2O3 to form Li2O and In, and finally the Li4.33In phase was formed between 0.7 and 0.2 V, revealing the finer particles size about 15 nm. The reverse reaction was a removal of Li+ from Li4.33In phase at different oxidative potentials, and the rates of which were controlled by the thermodynamics state initially and diffusion rate finally. Therefore, the total capacity was increased with decreasing current density. However, the cell delivering a stable and reversible capacity of 195 mAh g−1 between 1.2 and 0.2 V at 50 μA cm−2 may provide a choice of negative electrode applied in thin film lithium batteries.  相似文献   

5.
The all-solid-state Li–In/Li4Ti5O12 cell using the 80Li2S·20P2S5 (mol%) solid electrolyte was assembled to investigate rate performances. It was difficult to obtain the stable performance at the charge current density of 3.8 mA cm−2 in the all-solid-state cell. In order to improve the rate performance, the pulverized Li4Ti5O12 particles were applied to the all-solid-state cell, which retained the reversible capacity of about 90 mAh g−1 at 3.8 mA cm−2. The 70Li2S·27P2S5·3P2O5 glass–ceramic, which exhibits the higher lithium ion conductivity than the 80Li2S·20P2S5 solid electrolyte, was also used. The Li–In/70Li2S·27P2S5·3P2O5 glass–ceramic/pulverized Li4Ti5O12 cell was charged at a current density higher than 3.8 mA cm−2 and showed the reversible capacity of about 30 mAh g−1 even at 10 mA cm−2 at room temperature.  相似文献   

6.
Porous Co3O4 nanostructured thin films are electrodeposited by controlling the concentration of Co(NO3)2 aqueous solution on nickel sheets, and then sintered at 300 °C for 3 h. The as-prepared thin films are characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical measurements show that the highly porous Co3O4 thin film with the highest electrochemically active specific surface area (68.64 m2 g−1) yields the best electrochemical performance compared with another, less-porous film and with a non-porous film. The highest specific capacity (513 mAh g−1 after 50 cycles) is obtained from the thinnest film with Co3O4 loaded at rate of 0.05 mg cm−2. The present research demonstrates that electrode morphology is one of the crucial factors that affect the electrochemical properties of electrodes.  相似文献   

7.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

8.
Li4Ti5O12 is a very promising anode material for lithium secondary batteries. To improve the material's rate capability and pile density is considered as the important researching direction. One effective way is to prepare powders composed of spherical particles containing carbon black. A novel technique has been developed to prepare spherical Li4Ti5O12/C composite. The spherical precursor containing carbon black is prepared via an “outer gel” method, using TiOCl2, C and NH3 as the raw material. Spherical Li4Ti5O12/C powders are synthesized by sintering the mixture of spherical precursor and Li2CO3 in N2. The investigation of TG/DSC, SEM, XRD, Brunauer–Emmett–Teller (BET) testing, laser particle size analysis, tap-density testing and the determination of the electrochemical properties show that the Li4Ti5O12/C composite prepared by this method are spherical, has high tap-density and excellent rate capability. It is observed that the tap-density of spherical Li4Ti5O12/C powders (the mass content of C is 4.8%) is as high as 1.71 g cm−3, which is remarkably higher than the non-spherical Li4Ti5O12. Between 1.0 and 3.0 V versus Li, the initial discharge specific capacity of the sample is as high as 144.2 mAh g−1, which is still 128.8 mAh g−1 after 50 cycles at a current density of 1.6 mA cm−2.  相似文献   

9.
The layered LiNi1/3Mn1/3Co1/3O2 materials with good crystalline are synthesized by a novel method of hydrothermal method followed by a short calcination process. The crystalline structure and morphology of the synthesized materials are characterized by XRD, SEM. Their electrochemical performances are evaluated by CV, EIS and galvonostatic charge/discharge tests. The material synthesized at 850 °C for 6 h shows the highest initial discharge capacity of 187.7 mAh g−1 at 20 mA g−1. And the capacity retention of 97.9% is maintained at the end of 40 cycles at 1.0 C. CV test reveals almost no shift of anodic and cathodic peaks after first cycle, which indicates good reversible deintercalation and intercalation of Li+ ions.  相似文献   

10.
Nano-CuCo2O4 is synthesized by the low-temperature (400 °C) and cost-effective urea combustion method. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) studies establish that the compound possesses a spinel structure and nano-particle morphology (particle size (10–20 nm)). A slight amount of CuO is found as an impurity. Galvanostatic cycling of CuCo2O4 at 60 mA g−1 in the voltage range 0.005–3.0 V versus Li metal exhibits reversible cycling performance between 2 and 50 cycles with a small capacity fading of 2 mAh g−1 per cycle. Good rate capability is also found in the range 0.04–0.94C. Typical discharge and charge capacity values at the 20th cycle are 755(±10) mAh g−1 (∼6.9 mol of Li per mole of CuCo2O4) and 745(±10) mAh g−1 (∼6.8 mol of Li), respectively at a current of 60 mA g−1. The average discharge and charge potentials are ∼1.2 and ∼2.1 V, respectively. The underlying reaction mechanism is the redox reaction: Co ↔ CoO ↔ Co3O4 and Cu ↔ CuO aided by Li2O, after initial reaction with Li. The galvanostatic cycling studies are complemented by cyclic voltammetry (CV), ex situ TEM and SAED. The Li-cycling behaviour of nano-CuCo2O4 compares well with that of iso-structural nano-Co3O4 as reported in the literature.  相似文献   

11.
SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials with improved cycling performance over 2.5–4.6 V were investigated. The structural and electrochemical properties of the materials were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), charge–discharge tests and electrochemical impedance spectra (EIS). The results showed that the crystalline SrF2 with about 10–50 nm particle size is uniformly coated on the surface of LiNi1/3Co1/3Mn1/3O2 particles. As the coating amount increased from 0.0 to 2.0 mol%, the initial capacity and rate capability of the coated LiNi1/3Co1/3Mn1/3O2 decreased slightly owing to the increase of the charge-transfer resistance; however, the cycling stability was improved by suppressing the increase of the resistance during cycling. 4.0 mol% SrF2-coated LiNi1/3Co1/3Mn1/3O2 showed remarkable decrease of the initial capacity. 2.0 mol% coated sample exhibited the best electrochemical performance. It presented an initial discharge capacity of 165.7 mAh g−1, and a capacity retention of 86.9% after 50 cycles at 4.6 V cut-off cycling.  相似文献   

12.
Submicron-sized LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized using a simple self-propagating solid-state metathesis method with the help of ball milling and the following calcination. A mixture of Li(ac)·2H2O, Ni(ac)2·4H2O, Co(ac)2·4H2O, Mn(ac)2·4H2O (ac = acetate) and excess H2C2O4·2H2O was used as starting material without any solvent. XRD analyses indicate that the LiNi1/3Co1/3Mn1/3O2 materials were formed with typical hexagonal structure. The FESEM images show that the primary particle size of the LiNi1/3Co1/3Mn1/3O2 materials gradually increases from about 100 nm at 700 °C to 200–500 nm at 950 °C with increasing calcination temperature. Among the synthesized materials, the LiNi1/3Co1/3Mn1/3O2 material calcined at 900 °C exhibits excellent electrochemical performance. The steady discharge capacities of the material cycled at 1 C (160 mA g−1) rate are at about 140 mAh g−1 after 100 cycles in the voltage range 3–4.5 V (versus Li+/Li) and the capacity retention is about 87% at the 350th cycle.  相似文献   

13.
Rate capability of LiNi0.8Co0.15Al0.05O2 in solid-state cells was investigated with 70Li2S-30P2S5 glass-ceramics as a sulfide solid electrolyte. It showed higher rate capability than LiCoO2; discharge capacity observed at a current density of 10 mA cm−2 was ca. 70 mAh g−1. Surface coating with Li4Ti5O12 onto the LiNi0.8Co0.15Al0.05O2 particles further improved the high-rate performance to give ca. 110 mAh g−1. The rate capability promises to realize all-solid-state lithium secondary batteries with very high performance.  相似文献   

14.
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from a solid solution of Ni1.5Mn1.5O4 that was prepared by means of the solid reaction between Mn(CH3COO)2·4H2O and Ni(CH3COO)2·4H2O. XRD pattern shows that the product is well crystallized with a high degree of Li–M (Ni, Mn) order in their respective layers, and no diffraction peak of Li2MnO3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge–discharge cycling with different rate, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The cycling behavior between 2.5 and 4.4 V at a current rate of 21.7 mA g−1 shows a reversible capacity of about 190 mAh g−1 with little capacity loss after 100 cycles. High-rate capability test shows that even at a rate of 6C, stable capacity about 120 mAh g−1 is retained. Cyclic voltammetry (CV) profile shows that the cathode material has better electrochemical reversibility. EIS analysis indicates that the resistance of charge transfer (Rct) is small in fully charged state at 4.4 V and fully discharged state at 2.5 V versus Li+/Li. The favorable electrochemical performance was primarily attributed to regular and stable crystal structure with little intra-layer disordering.  相似文献   

15.
C. Lai 《Journal of power sources》2010,195(11):3676-3679
Hierarchical structured Li4Ti5O12, assembling from randomly oriented nanosheets with a thickness of about 10-16 nm, is fabricated by a facile hydrothermal route and following calcination. It is demonstrated that the as-prepared sample has good cycle stability and excellent high rate performance. In particular, the discharge capacity of 128 mAh g−1 can be obtained at the high current density of 2000 mA g−1, which is about 87% of that at the low current density of 200 mA g−1 upon cycling, indicating that the as-prepared sample can endure great changes of various discharge current densities to retain a good stability. In addition, the pseudocapacitive effect based on the hierarchical structure, also contributes to the high rate capability of Li4Ti5O12, which can be confirmed in cyclic voltammograms.  相似文献   

16.
Layer-structured Zr doped Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 (0 ≤ x ≤ 0.05) were synthesized via slurry spray drying method. The powders were characterized by XRD, SEM and galvanostatic charge/discharge tests. The products remained single-phase within the range of 0 ≤ x ≤ 0.03. The charge and discharge cycling of the cells showed that Zr doping enhanced cycle life compared to the bare one, while did not cause the reduction of the discharge capacity of Li[Ni1/3Co1/3Mn1/3]O2. The unchanged peak shape in the differential capacity versus voltage curve suggested that the Zr had the effect to stabilize the structure during cycling. More interestingly, the rate capability was greatly improved. The sample with x = 0.01 presented a capacity of 160.2 mAh g−1 at current density of 640 mA g−1(4 C), corresponding to 92.4% of its capacity at 32 mA g−1(0.2 C). The favorable performance of the doped sample could be attributed to its increased lattice parameter.  相似文献   

17.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

18.
The spherical Li[Ni1/3Co1/3Mn1/3]O2 powders with appropriate porosity, small particle size and good particle size distribution were successfully prepared by a slurry spray drying method. The Li[Ni1/3Co1/3Mn1/3]O2 powders were characterized by XRD, SEM, ICP, BET, EIS and galvanostatic charge/discharge testing. The material calcined at 950 °C had the best electrochemical performance. Its initial discharge capacity was 188.9 mAh g−1 at the discharge rate of 0.2 C (32 mA g−1), and retained 91.4% of the capacity on going from 0.2 to 4 C rate. From the EIS result, it was found that the favorable electrochemical performance of the Li[Ni1/3Co1/3Mn1/3]O2 cathode material was primarily attributed to the particular morphology formed by the spray drying process which was favorable for the charge transfer during the deintercalation and intercalation cycling.  相似文献   

19.
Nano-sized LiMn2O4 spinel with well crystallized homogeneous particles (60 nm) is synthesized by a resorcinol-formaldehyde route. Micro-sized LiMn2O4 spinel with micrometric particles (1 μm) is prepared by a conventional solid-state reaction. These two samples are characterized by XRD, SEM, TEM, BET, and electrochemical methods. At current rate of 0.2C (1C = 148 mA g−1), a discharge capacity of 136 mAh g−1 is obtained on the nano-sized LiMn2O4, which is higher than that of micro-sized one (103 mAh g−1). Furthermore, compared to the micro-sized sample, nano-sized LiMn2O4 shows much better rate capability, i.e. a capacity of 85 mAh g−1, 63% of that at 0.2C, is realized at 60C. The excellent high rate performance of nano-sized LiMn2O4 spinel may be attributed to its impurity-free nano-sized particles, higher surface area and well crystalline. The outstanding electrochemical performances demonstrate that the nano-sized LiMn2O4 spinel will be the promising cathode materials for high power lithium-ion batteries used in hybrid and electric vehicles.  相似文献   

20.
In this study a modified solid state synthesis (auto-ignition method) is used to form nanosized spinel type material LiMg0.05Ni0.45Mn1.5O4. This material presents a high voltage plateau at 4.75 V vs. Li/Li+. Structural and electrochemical characterisations have been performed using a wide range of techniques (TEM, neutron diffraction, galvanostatic measurements, and impedance spectroscopy). Besides, in situ XAS has been performed to monitor the evolution of Ni and Mn oxidation state during Li intercalation. The material presents an ordered cubic spinel structure, good capacity retention upon cycling (131 mAh g−1 at C/10 and 117 mAh g−1 at 1C) and good electronic conductivity (10−6 S cm−1 at RT). The simultaneous presence of Mn3+/Mn4+ in the structure has been investigated and explained by inclusion of disordered nanodomains in the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号