首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to reduce the cost, volume and weight of the bipolar plates used in the proton exchange membrane fuel cells (PEMFC), more attention is being paid to metallic materials, among which 316L stainless steel (SS316L) is quite attractive. In this study, metallic Ta is deposited on SS316L using physical vapor deposition (PVD) to enhance the corrosion resistance of the bipolar plates. Simulative working environment of PEMFC is applied for testing the corrosion property of uncoated and Ta-coated SS316L. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods (potentiodynamic and potentiostatic polarization) are also used for analyzing characteristics of uncoated and Ta-coated SS316L. Results show that, Ta-coated SS316L has significantly better anticorrosion property than that of uncoated SS316L, with corrosion current densities of uncoated SS316L being 44.61 μA cm−2 versus 9.25 μA cm−2 for Ta-coated SS316L, a decrease of about 5 times. Moreover, corrosion current densities of Ta-coated SS316L in both simulative anode (purged with H2) and cathode (purged with air) conditions are smaller than those of uncoated SS316L.  相似文献   

2.
Corrosion resistance performance of SS316L treated by passivation solution was investigated in a simulated environment of the passive direct methanol fuel cell (DMFC). Electrochemical impedance spectroscopic (EIS) test showed that polarization resistance of untreated and treated SS316L were 1191 Ω cm2 and 9335 Ω cm2, respectively. The above result agreed with the Tafel slope analysis of potentiodynamic polarization curves. Comparing the untreated and treated SS316L in the simulated environment of DMFC anode working conditions, it was observed that the corrosion current density of treated SS316L as estimated by 4000 s potentiostatic test reduced from 38.7 μA cm−2 to 0.297 μA cm−2, meanwhile, the current densities of untreated and treated SS316L in cathode working conditions were 3.87 μA cm−2 and 0.223 μA cm−2, respectively. It indicated that the treated SS316L should be suitable in both anode and cathode environment of passive DMFCs. The treated SS316L bipolar plates have been assembled in a passive single fuel cell. A peak power density of 1.18 mW cm−2 was achieved with 1 M methanol at ambient temperature.  相似文献   

3.
A physical vapor deposition (PVD) TiN coating has been used to increase the corrosion resistance of two stainless steel materials for bipolar plate application in proton exchange membrane fuel cells (PEMFCs). Our earlier studies had shown that a TiN coating on SS410 and SS316L increased the corrosion resistance of SS410 and SS316L significantly. In this study, we examine how the substrate affects the corrosion of TiN-coated stainless steel in the simulated anode and cathode environments. Potentiodynamic and contact resistance test results show that the polarization resistance and contact resistance of TiN-coated SS410 and TiN-coated SS316L are almost the same. However, in the simulated anode condition, the corrosion current density of TiN-coated SS410 is positive and the corrosion current density of TiN-coated SS316L is negative. Inductively coupled plasma optical emission spectrometry (ICP-OES) test results also show that the metal ion concentration is much higher for TiN-coated SS410 at the anode side. At the cathode side, the potentiostatic and ICP-OES tests show that the corrosion of TiN-coated SS410 and TiN-coated SS316L are in the same range. Therefore, the substrate has an effect on corrosion in the simulated anode working conditions of PEMFCs. In order to be the suitable bipolar plate materials, both the coating and substrate need to have a higher corrosion resistance.  相似文献   

4.
A nickel-rich layer about 100 μm in thickness with improved conductivity was formed on the surface of austenitic stainless steel 316L (SS316L) by ion implantation. The effect of ion implantation on the corrosion behavior of SS316L was investigated in 0.5 M H2SO4 with 2 ppm HF solution at 80 °C by potentiodynamic test. In order to investigate the chemical stability of the ion implanted SS316L, the potentiostatic test was conducted in an accelerated cathode environment and the solutions after the potentiostatic test were analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES). The results of potentiodynamic test show that the corrosion potential of SS316L is shifted toward the positive direction from −0.3 V versus SCE to −0.05 V versus SCE in anode environment and the passivation current density at 0.6 V is reduced from 11.26 to 7.00 μA cm−2 in the cathode environment with an ion implantation dose of 3 × 1017 ions cm−2. The potentiostatic test results indicate that the nickel implanted SS316L has higher chemical stability in the accelerated cathode environment than the bare SS316L, due to the increased amount of metallic Ni in the passive layer. The ICP results are in agreement with the electrochemical test results that the bare SS316L has the highest dissolution rate in both cathode and anode environments and the Ni implantation markedly reduces the dissolution rate. A significant improvement of interfacial contact resistance (ICR) is achieved for the SS316L implanted with nickel as compared to the bare SS316L, which is attributed to the reduction in passive layer thickness caused by the nickel implantation. The ICR values for implanted specimens increase with increasing dose.  相似文献   

5.
Metallic bipolar plates are one of the promising alternatives to the graphite bipolar plates in proton exchange membrane fuel cell (PEMFC) systems. In this study, stainless steel (SS304, SS316L, and SS430), nickel (Ni 270), and titanium (Grade 2 Ti) plates with an initial thickness of 51 μm were experimented as bipolar plate substrate materials in corrosion resistance tests. In addition to unformed blanks, SS316L plates were formed with stamping and hydroforming processes to obtain bipolar plates under different process conditions (stamping force, hydroforming pressure, stamping speed, hydroforming pressure rate). These bipolar plates, then, were subjected to corrosion tests, and the results were presented and discussed in detail. Potentiodynamic polarizations were performed to observe corrosion resistance of metallic bipolar plates by simulating the anodic and cathodic environments in the PEMFC. In order to determine the statistical significance of the corrosion resistance differences between different manufacturing conditions, analysis of variance (ANOVA) technique was used on the corrosion current density (Icorr, μA cm−2) values obtained from experiments. ANOVA for the unformed substrate materials indicated that SS430 and Ni have less corrosion resistance than the other substrate materials tested. There was a significant difference between blank (unformed) and stamped SS316L plates only in the anodic environment. Although there was no noteworthy difference between unformed and hydroformed specimens for SS316L material, neither of these materials meet the Department of Energy‘s (DOE) target corrosion rate of ≤1 μA cm−2 by 2015 without coating. Finally, stamping parameters (i.e. speed and force levels) and hydroforming parameters (i.e. the pressure and pressure rate) significantly affected the corrosion behavior of bipolar plates.  相似文献   

6.
A reforming pack chromization with rolling pretreatment process is utilized to develop inexpensive and high-performance Fe-based metal bipolar plates (SS 420, SS 430, and SS 316 stainless steels) for PEMFC systems. Rolling process is previously performed to reduce the chromizing temperature and generate a coating possessing excellent conductivity and corrosion resistance on the steels during chromization. The power efficiencies of rolled-chromized and simple chromized bipolar plates are compared with graphite bipolar plates employed in PEMFCs. The results show that the rolled-chromized bipolar plates have a corrosion current (Icorr) of 7.87 × 10−8 A cm−2 and an interfacial contact resistance of 9.7 mΩ cm2. Moreover, the power density of the single cell assembled with rolled-chromized bipolar plates is 0.46 W cm−2, which is very close to that of graphite (0.50 W cm−2), in the tested conditions of this study.  相似文献   

7.
Polypyrrole is one of the most important conductive polymers because it is easily oxidized, water soluble and commercially available. Also, polypyrrole coatings have potential applications in batteries, fuel cells, electrochemical sensors, anti-corrosion coatings and drug delivery systems. In this study, a very thin gold layer was first coated on SS316L, and then a polypyrrole coating was laid on top. The nucleation and growth mechanisms of polypyrrole on the gold-coated SS316L were studied by electrochemical nucleation and growth techniques. SEM was used to characterize the polypyrrole coating morphology. Potentiodynamic tests were performed to determine the corrosion parameters of the polypyrrole coatings. Potentiostatic tests of the coated SS316L were conducted in simulated anode and cathode environments of a PEM fuel cell. The simulated anode environment was at a potential of about −0.1 V versus SCE purged with H2 and the simulated cathode environment was at a potential of about 0.6 V versus SCE purged with O2. After coating with Au and polypyrrole, the polarization resistance of SS316L is increased about six times, and the corrosion current density is decreased about seven times, compared to the base SS316L. Also, our calculations show that the metal ion concentration in solution for the polypyrrole/Au/SS316L had met the target of 10 ppm after 5000 h fuel cell operation.  相似文献   

8.
Amorphous carbon (a-C) film about 3 μm in thickness is coated on 316L stainless steel by close field unbalanced magnetron sputter ion plating (CFUBMSIP). The AFM and Raman results reveal that the a-C coating is dense and compact with a small size of graphitic crystallite and large number of disordered band. Interfacial contact resistance (ICR) results show that the surface conductivity of the bare SS316L is significantly increased by the a-C coating, with values of 8.3–5.2 mΩ cm2 under 120–210 N/cm2. The corrosion potential (Ecorr) shifts from about −0.3 V vs SCE to about 0.2 V vs SCE in both the simulated anode and cathode environments. The passivation current density is reduced from 11.26 to 3.56 μA/cm2 with the aid of the a-C coating in the simulated cathode environment. The a-C coated SS316L is cathodically protected in the simulated anode environment thereby exhibiting a stable and lower current density compared to the uncoated one in the simulated anode environment as demonstrated by the potentiostatic results.  相似文献   

9.
In this study, the contact resistance (CR) and electrochemical properties of TiN, CrN and TiAlN electron beam physical vapor deposition (EBPVD) coatings and their stainless steel 316L (SS316L) substrate were investigated in a simulated proton exchange membrane (PEM) fuel cell environment. The potentiodynamic polarization corrosion tests were conducted at 70 °C in 1 M H2SO4 purged with either O2 or H2, and the potentiostatic corrosion tests were performed under both simulated cathodic (+0.6 V vs. Ag/AgCl reference electrode purged with O2) and anodic conditions (−0.1 V vs. Ag/AgCl reference electrode purged with H2) for a long period (4 h). SEM was used to observe the surface morphologies of the samples after corrosion testing. All the TiN-, TiAlN- and CrN-coated SS316L showed a lower CR than the uncoated SS316L. While the corrosion performance of the coatings was dependent on the cathodic and anodic conditions, the CrN coating exhibited a higher (in the anodic environment) or similar (in the cathodic environment) corrosion resistance to the uncoated SS316L. Thus, the CrN-coated SS316L could potentially be used as a bipolar plate material in the PEM fuel cell environment. Although the EBPVD process greatly reduced number of pinholes in the coatings compared to other plasma enhanced reactive evaporations, future research efforts should be directed to eliminate the pinholes in the coatings for long-term durability in fuel cell applications.  相似文献   

10.
Proton exchange membrane water electrolysis (PEMWE) is a promising technology to be incorporated in the production of green hydrogen, but one of its limitation to market penetration is the cost of bipolar plates (BPP).Aiming to reduce the cost of PEMWE stack, different surface engineered coating systems based on CrN/TiN, Ti/TiN, Ti and TiN deposited by physical vapor deposition on SS 316L, SS 904L and SS 321 were tested, as potential cost effective solutions to be implemented on bipolar plates. A corrosion evaluation has been carried out in anodic PEMWE conditions in order to determine the best substrate/coating combination for bipolar plates. Ti/TiN multi-layered coating on SS 321 shown the best performance with ?0.02% weight loss, current at 2 VSHE to 436 μA cm?2 and ICR after corrosion test to 9.9 mΩ cm2.  相似文献   

11.
The bipolar plate in polymer electrolyte membrane (PEM) fuel cell helps to feed reactant gases to the membrane electrode assembly (MEA) and collect current from the MEA. To facilitate these functions, the bipolar plate material should exhibit excellent electrical conductivity and corrosion resistance under fuel cell operating conditions, and simultaneously be of low-cost to meet commercialization enabling targets for automotive fuel cells. In the present work, we focus on the benchmarking of 10 nm gold coated SS316L (a.k.a. Au Nanoclad®) bipolar plate material through ex situ tests, which is provided by Daido Steel (Japan). The use of nanometer range Au coatings help to retain the noble properties of gold while significantly reducing the cost of the bipolar plate. The area specific resistance of the flat sample is 0.9 mΩ cm2 while that for the formed bipolar plate is 6.3 mΩ cm2 at compaction force of 60 N cm−2. The corrosion current density was less than 1 μA cm−2 at 0.8 V/NHE with air sparge simulating cathodic conditions. Additionally, gold coated SS316L showed anodic passivation of SS316L, thereby exhibiting robustness towards coating defects including surface scratches that may originate during the manufacturing of the bipolar plate. These series of ex situ tests indicate that 10 nm gold coated SS316L has good potential to be considered for commercial bipolar plates in automotive fuel cell stack.  相似文献   

12.
The lower temperature chromizing treatment is developed to modify 316L stainless steel (SS 316L) for the application of bipolar plate in proton exchange membrane fuel cell (PEMFC). The treatment is performed to produce a coating, containing mainly Cr-carbide and Cr-nitride, on the substrate to improve the anticorrosion properties and electrical conductivity between the bipolar plate and carbon paper. Shot peening is used as the pretreatment to produce an activated surface on stainless steel to reduce chromizing temperature. Anticorrosion properties and interfacial contact resistance (ICR) are investigated in this study. Results show that the chromized SS 316L exhibits better corrosion resistance and lower ICR value than those of bare SS 316L. The chromized SS 316L shows the passive current density about 3E−7 A cm−2 that is about four orders of magnitude lower than that of bare SS 316L. ICR value of the chromized SS 316L is 13 mΩ cm2 that is about one-third of bare SS 316L at 200 N cm−2 compaction forces. Therefore, this study clearly states the performance advantages of using chromized SS 316L by lower temperature chromizing treatment as bipolar plate for PEMFC.  相似文献   

13.
In order to determine the suitability of SS316L as a bipolar plate material in proton exchange membrane fuel cells (PEMFCs), its corrosion behavior is studied under different simulated PEMFC cathode corrosion conditions. Solutions of 1 × 10−5 M H2SO4 with a wide range of different F concentrations at 70 °C bubbled with air are used to simulate the PEMFC cathode environment. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to study the corrosion behavior. Scanning electron microscopy (SEM) is used to examine the surface morphology of the specimen after it is potentiostatic polarized under simulated PEMFC cathode environments. Auger electron spectroscopy (AES) analysis is used to identify the composition and the depth profile of the passive film formed on the SS316L surface after it is polarized in simulated PEMFC cathode environments. Photo-electrochemical (PEC) method and capacitance measurements are used to characterize the semiconductor passive films. The results of both the potentiodynamic and potentiostatic analyses show that corrosion currents increase with F concentrations. SEM examination results indicate that pitting occurs under all the conditions studied and pitting is more severe with higher F concentrations. From the results of AES analysis, PEC analysis and the capacitance measurements, it is determined that the passive film formed on SS316L is a bi-layer semiconductor, similar to a p-n heterojunction consisting of an external n-type iron oxide rich semiconductor layer (electrolyte side) and an internal p-type iron-chromium oxide semiconductor layer (metal side). Further analyses of the experimental results reveal the electronic structure of the passive film and shed light on the corrosion mechanisms of SS316L in the PEMFC cathode environment.  相似文献   

14.
Carbon film has been deposited on 304 stainless steel (SS304) using close field unbalanced magnetron sputter ion plating (CFUBMSIP) to improve the corrosion resistance and electrical conductivity of SS304 acting as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The corrosion resistance, interfacial contact resistance (ICR), surface morphology and contact angle with water of the bare and carbon-coated SS304 are investigated. The carbon-coated SS304 shows good corrosion resistance in the simulated cathode and anode PEMFC environment. The ICR between the carbon-coated SS304 and the carbon paper is 8.28-2.59 mΩ cm2 under compaction forces between 75 and 360 N cm−2. The contact angle of the carbon-coated SS304 with water is 88.6°, which is beneficial to water management in the fuel cell stack. These results indicate that the carbon-coated SS304 exhibits high corrosion resistance, low ICR and hydrophobicity and is a promising candidate for bipolar plates.  相似文献   

15.
Titanium oxynitride (TiNxOy) films are investigated for application as a bipolar plate coating material in a polymer electrolyte membrane fuel cell (PEMFC). TiNxOy films with various amounts of oxygen are deposited on stainless-steel substrates by inductively coupled plasma (ICP) assisted reactive sputtering by changing the oxygen gas flow rate. The interfacial contact resistance (ICR) and the corrosion resistance of the TiNxOy films are measured under PEMFC simulated conditions. When the amount of oxygen in the TiNxOy film is approximately <12 at.% (O2 flow rate ≤0.2 sccm), the corrosion resistance is enhanced considerably, whereas the interfacial contact resistance does not change. The corrosion current density decreases from 8 × 10−6 A cm−2 for the TiN-coated sample to 2.7 × 10−6 A cm−2 at 0.6 V vs. SCE as a result of oxygen incorporation in the TiN film. The ICR value remains at 2.5 mΩ cm2 at 150 N cm−2. When a small amount of oxygen is added to the TiN film, it is postulated that the oxygen atoms locate at the column and grain boundaries, and thus prevent corrosive media from penetrating into the substrate while not deteriorating the electrical property of the film.  相似文献   

16.
(Titanium, chromium) nitride [(Ti,Cr)N] coatings are synthesized on a 316L stainless-steel substrate by inductively-coupled, plasma-assisted, reactive direct current magnetron sputtering. The chemical and electrical properties of the coating are investigated from the viewpoint of it application to bipolar plates. Nanocrystallized Cr–Ti films are formed in the absence of nitrogen gas, while a hexagonal β-(Ti,Cr)2N phase is observed at N2 = 1.2 sccm. Well-crystallized (Ti,Cr)N films are obtained at N2 > 2.0 sccm. The corrosion resistance of the coating is examined by potentiodynamic and potentiostatic tests in 0.05 M H2SO4 + 0.2 ppm HF solution at 80 °C, which simulates the operation conditions of a polymer electrolyte membrane fuel cell. The Davies method is used to measure the interfacial contact resistance between the sample and carbon paper. The (Ti,Cr)N coating exhibits the highest corrosion potential and lowest current density. In a cathode environment, the corrosion potential and current density are 0.33 V (vs. SCE) and <5 × 10−7 A cm−2 (at 0.6 V), respectively. In an anode environment the corresponding values are 0.16 V and <−5 × 10−8 A cm−2 at −0.1 V. The (Ti,Cr)N coatings exhibit excellent stability during potentiostatic polarization tests in both anode and cathode environments. The interfacial contact resistance decreases with deposition of the (Ti,Cr)N film, and a minimum value of 4.5 mΩ cm2 is obtained at a compaction force of 150 N cm−2, which indicates that the formation of oxide films can be successfully prevented by the (Ti,Cr)N film. Analysis with Auger electron spectroscopy reveals that the oxygen content at the surface decreases with increase in the nitrogen content.  相似文献   

17.
Stainless steels as proton exchange membrane fuel cell bipolar plates have received extensive attention in recent years. The pack chromizing layer was fabricated on 316L stainless steel to improve the corrosion resistance and electrical conductivity. The corrosion properties were investigated in 0.5 M H2SO4 + 2 ppm HF solution at 70 °C purged with hydrogen gas and air. Higher electrochemical impedance and more stable passive film were obtained by chromizing the 316L stainless steel. Potentiodynamic polarization results showed the corrosion current densities were reduced to 0.264  μA cm−2 and 0.222  μA cm−2 in two simulated operating environments. In addition, the interfacial contact resistance was decreased to 1.4 mΩ⋅cm2 under the compaction force of 140 N⋅cm−2 and maintained at low values after potentiostatic polarization for 4 h. The excellent corrosion and conductive performances could be attributed to the chromium carbides and high alloying element content in chromizing layer.  相似文献   

18.
The effect of temperature on the corrosion behavior of SS316L in simulated proton exchange membrane fuel cell (PEMFC) environments has been systematically studied. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to characterize the corrosion behavior. Atomic force microscope (AFM) is used to examine the surface morphology and X-ray photoelectron spectroscopy (XPS) analysis is used to identify the composition and the depth profile of the passive film. Photo-electrochemical (PEC) measurements are also performed to determinate the band gap energy of the passive film semiconductor. Interfacial contact resistances (ICR) between polarized SS316L and carbon paper are also measured. The experimental results show that corrosion resistance decreases with temperatures even though the thickness of passive film increases with temperature, at a given cell potential, the corrosion behavior of SS316L can be significantly different at different temperatures in PEMFC cathode environments, and the band gap of passive films decrease with temperature. The results also show that within the temperature range studied (25-90 °C), after different passivation time, the corrosion current densities of SS316L are all lower than the US DOE 2015 target value of 1 μA cm−2, but the ICR between the carbon paper and polarized SS316L does not satisfy the US DOE 2015 target.  相似文献   

19.
Chromium nitride/Cr coating has been deposited on surface of 316L stainless steel to improve conductivity and corrosion resistance by physical vapor deposition (PVD) technology. Electrochemical behaviors of the chromium nitride/Cr coated 316L stainless steel are investigated in 0.05 M H2SO4 + 2 ppm F simulating proton exchange membrane fuel cell (PEMFC) environments, and interfacial contact resistance (ICR) are measured before and after potentiostatic polarization at anodic and cathodic operation potentials for PEMFC. The chromium nitride/Cr coated 316L stainless steel exhibits improved corrosion resistance and better stability of passive film either in the simulated anodic or cathodic environment. In comparison to 316L stainless steel with air-formed oxide film, the ICR between the chromium nitride/Cr coated 316L stainless steel and carbon paper is about 30 mΩ cm2 that is about one-third of bare 316L stainless steel at the compaction force of 150 N cm−2. Even stable passive films are formed in the simulated PEMFC environments after potentiostatic polarization, the ICR of the chromium nitride/Cr coated 316L stainless steel increases slightly in the range of measured compaction force. The excellent performance of the chromium nitride/Cr coated 316L stainless steel is attributed to inherent characters. The chromium nitride/Cr coated 316L stainless steel is a promising material using as bipolar plate for PEMFC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号