共查询到11条相似文献,搜索用时 15 毫秒
1.
This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such “technical” barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these “socio-technical” obstacles may be just as important to any V2G transition—and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world. 相似文献
2.
This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvester’s (Diffusion technologique non binaire et schéma épidémiologique. Une reconsidération. Economie Appliquée 1995; tome XLVIII(3):71–101), it is shown that the early deployment of plug-in hybrid vehicles—the only electric technology which can compete with fuel cell cars in the multipurpose vehicle field—risks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage. 相似文献
3.
Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology that can reduce vehicles’ fuel consumption, decreasing transportation-related emissions and dependence on imported oil. The net emission and cost impacts of PHEV use are intimately connected with the electricity generator mix used for PHEV charging, which will in turn depend on when during the day PHEVs are recharged. This paper analyzes the effects of a PHEV fleet in the state of Ohio. The analysis considers two different charging scenarios—a controlled and an uncontrolled scenario—which offer the grid operator different levels of control over the timing of PHEV charging. The analysis shows that PHEV use could result in major reductions in gasoline consumption of close to 70% per vehicle compared to a conventional vehicle (CV) under both charging scenarios. Moreover, despite the high penetrations of coal in the Ohio power system, net CO2 emissions from a PHEV could be up to 24% lower than that of a CV in the uncontrolled case, however, CO2 and NOx emissions would increase in both scenarios. 相似文献
4.
Plug-in hybrid electric vehicles (PHEVs) consume both gasoline and grid electricity. The corresponding temporal energy consumption and emission trends are valuable to investigate in order to fully understand the environmental benefits. The 24-h energy consumption and emission profile depends on different vehicle designs, driving, and charging scenarios. This study assesses the potential energy impact of PHEVs by considering different charging scenarios defined by different charging power levels, locations, and charging time. The region selected for the study is the South Coast Air Basin of California. Driving behaviors are derived from the National Household Travel Survey 2009 (NHTS 2009) and vehicle parameters are based on realistic assumptions consistent with projected vehicle deployments. Results show that the reduction in petroleum consumption is significant compared to standard gasoline vehicles and the ability to operate on electricity alone is crucial to cold start emission reduction. The benefit of higher power charging on petroleum consumption is small. Delayed and average charging are better than immediate charging for home, and non-home charging increases peak grid loads. 相似文献
5.
This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced. 相似文献
6.
Paul Albertus Jeremy Couts Venkat Srinivasan John Newman 《Journal of power sources》2008,183(2):771-782
We combine a detailed battery model with a simple vehicle model to examine the battery size and capacity usage of a LixC6/Liy+0.16Mn1.84O4 cell (with a normal and artificially flat equilibrium potential) and a Li4+3xTi5O12/LiyFePO4 cell. The features of cell chemistry we are concerned with are the magnitude and shape of the cell equilibrium potential and internal resistance. Our key findings include that a battery for a hybrid electric vehicle application has a capacity usage from 15 to 25% (for a minimum separator area size), and as one moves from a HEV battery to a plug-in hybrid electric vehicle battery there is a change in the slope of the separator area vs. equivalent-electric range curve due to the shape of the pulse-power capability. We also find that defining the resistance using the HPPC protocol has limitations because in general the pulse resistance depends on the applied current and pulse duration. Our detailed, combined model also shows that the benefits of a flat-potential system may be limited because of the relative positions of a flat and sloped equilibrium potential, and the lack of a driving force for the relaxation of solid-phase concentration gradients throughout the electrode. That latter effect is shown to be more significant for electrodes with a non-uniform current distribution. 相似文献
7.
We develop a simplified model to examine the effect of the shape and magnitude of the battery pulse-power capability on capacity usage and battery size. The simplified model expresses the capacity usage and a dimensionless battery area in terms of a dimensionless energy-to-power ratio and a parameter that characterizes the shape of the pulse-power capability. We also present dimensional results that show how the capacity usage depends on the equivalent-electric range and separator area, and how the battery area depends on the equivalent-electric range. Key results include the presence of a Langmuir-like relationship between the capacity usage and the dimensionless energy-to-power ratio, and a linear relationship between the dimensionless energy-to-power ratio and a dimensionless area, with a slope and offset that depend on the shape of the pulse-power capability. We also found that a flat pulse-power capability curve increases capacity usage and decreases battery size, and that two important parameters for battery design are (U − Vmin)Vmin/R, which reflects the maximum power capability, and Q〈V〉, which reflects the battery energy. The results and analysis contained herein are used to help interpret the results from a combined battery and vehicle model, presented in a companion paper. 相似文献
8.
Carla Silva 《International Journal of Hydrogen Energy》2011,36(20):13225-13232
The main objective of this research is to quantify the impact of introducing electric vehicles and plug-in hybrid vehicles, including fuel cell on conventional fleets. The impact is estimated in terms of local pollutants, HC, CO, NOx, PM, and in terms of CO2 and water vapour global emissions. The specific fleet of Portugal, roughly 6 million light-duty vehicles (30% diesel, 70% gasoline) is considered, and the mobility indicator of the fleet, 90 thousand million p × km, is kept constant throughout the analysis. Probability density functions for energy consumption and emissions are derived for conventional, electric and plug-in hybrid vehicles, in charge depleting and charge sustaining modes. The Monte Carlo method is used to obtain average distribution estimates for discounting values of “old vehicles” that are removed from the fleet, and to add average distribution estimates for the “new vehicles” entering the fleet. Considering the actual Portuguese fleet as the reference case, local pollutant emissions decrease by a factor of 10-53%, for 50% fleet replacement. A potential 23% decrease of CO2 is foreseen, and a potential 31% increase of H2O emissions is forecasted. Life cycle water vapour emissions tend to rise and are, typically, 2-4 times higher than CO2 values at the upstream stage, due to its release in the cooling towers of thermal power plants. It is interesting to note that considering 1 MJ of energy required at vehicle wheels, in an overall life cycle context, both fuel cell and electric modes have nearly twice as much H2O emissions than internal combustion vehicles. CO2 emissions tend to decrease with electric drive vehicles penetration due to the higher fleet life cycle efficiency. 相似文献
9.
Nowadays, the deterioration of ecological environment and the ever rising gas price make green transportation our relentless pursuit. Energy-saving, low-emission even zero-emission electric vehicles (EVs) have been considered as one solution to the problem. With the rapid development of plug-in electric vehicle (PHEV) and forceful support and incentives from the government, PHEV and its supporting facilities are being gradually popularized. When randomly being connected to the power grid in large scale, PHEVs will bring new challenges to power grid in operation and management. This paper presents an overall review on historical research on power system integrated with electric vehicles and especially focuses on economic dispatch of PHEV in the electricity market. The paper also discusses the joint scheduling problem considering other renewable energy resources and risk management of PHEV-penetrated power systems. 相似文献
10.
Electric vehicles (EVs) present efficiency and environmental advantages over conventional transportation. It is expected that in the next decade this technology will progressively penetrate the market. The integration of plug-in electric vehicles in electric power systems poses new challenges in terms of regulation and business models. This paper proposes a conceptual regulatory framework for charging EVs. Two new electricity market agents, the EV charging manager and the EV aggregator, in charge of developing charging infrastructure and providing charging services are introduced. According to that, several charging modes such as EV home charging, public charging on streets, and dedicated charging stations are formulated. Involved market agents and their commercial relationships are analysed in detail. The paper elaborates the opportunities to formulate more sophisticated business models for vehicle-to-grid applications under which the storage capability of EV batteries is used for providing peak power or frequency regulation to support the power system operation. Finally penetration phase dependent policy and regulatory recommendations are given concerning time-of-use pricing, smart meter deployment, stable and simple regulation for reselling energy on private property, roll-out of public charging infrastructure as well as reviewing of grid codes and operational system procedures for interactions between network operators and vehicle aggregators. 相似文献
11.
This paper proposes a new robust controller design of heat pump (HP) and plug-in hybrid electric vehicle (PHEV) for frequency control in a smart microgrid (MG) system with wind farm. The intermittent power generation from wind farm causes severe frequency fluctuation in the MG. To alleviate frequency fluctuation, the smart control of power consumption of HP and the power charging of PHEV in the customer side can be performed. The controller structure of HP and PHEV is a proportional integral derivative (PID) with single input. To enhance the performance and robustness against system uncertainties of the designed controller, the particle swarm optimization based-mixed H2/H∞ control is applied to design the PID controllers of HP and PHEV. Simulation studies confirm the superior robustness and frequency control effect of the proposed HP and PHEV controllers in comparison to the conventional controller. 相似文献