首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An SBR (sequencing batch reactor) system was evaluated for nutrient removal. The system is capable of removing 95% of influent PO3?4, or from 6.7 to 0.4 mg P∕L, with the addition of acetate of 120–150 mg COD∕L in the feed solution (primary effluent). Nitrification was also achieved within the preset aeration cycle time in reducing the effluent ammonia level from 16.3–19.8 mg N∕L to 0.2–0.3 mg N∕L. However, denitrification was incomplete due to a slower endogenous nitrate respiration rate in the idle period, resulting in an effluent nitrate level of 7–8 mg N∕L. A linear version of the ASM2 (Activated Sludge Model No. 2) was developed to model the performance of an SBR system for nutrient removal. The developed model appropriately predicts the dynamic behavior of the SBR system with respect to phosphate release∕uptake, nitrification, ammonification, and denitrification. Compared with the full ASM2, the calibration of model parameters and model simulation require less computational time for practical implementation of the linear model into a process control system for the SBR.  相似文献   

2.
The formate-utilizing sludge was first enriched in a chemostat reactor for over 90 days; at steady state, the sludge yield averaged 0.066 mg volatile suspended solids (VSS)∕mg chemical oxygen demand (COD). The methanogenic characteristics of this sludge were then investigated in three series of batch experiments at 37°C using formate, acetate, and H2∕CO2, individually, as substrates. At pH 6.4–8.0, the formate-degrading rate averaged 0.76 mg∕mg VSS∕h (6.35 mg COD∕mg VSS∕d). At pH 3.0, the sludge completely lost its bioactivity, and required a lengthy recovery period to regain a fraction of its bioactivity after the pH was adjusted to pH 7.1. The sludge was also able to utilize H2∕CO2 as substrate at an average rate of 0.0167 mg H2∕mg VSS∕h (3.21 mg COD∕mg VSS∕d). At pH ≤ 8.0, the sludge degraded acetate at a very low rate of 3.0 μg∕mg VSS∕h (0.077 mg COD∕mg VSS∕d). The sludge exhibited a slight homoacetogenic activity at pH > 8.0 using formate as substrate; the homoacetogenic reaction using H2∕CO2 as substrate was thermodynamically infeasible, according to chemical free energy analysis.  相似文献   

3.
Using a linear model, an optimization scheme for a sequencing batch reactor (SBR) system for phosphorus removal was investigated. The objective was to minimize energy consumption by reducing the aeration cycle time (tair), while meeting the permit requirement (monthly average PO3?4 of 0.5 mg P∕L). Based on the model prediction and error feedback information, the proposed scheme controlled the SBR system well both in the simulation and the real application by adjusting the tair to meet the effluent PO3?4 constraint. Mismatch between the model prediction and the measured data was compensated for. In the simulation, the average aeration cycle time was calculated to be 2.8 h, while in the real system it was 3.5 h. The actual optimized system provided excellent removal of phosphorus, COD, and ammonia with efficiencies of 93% (7.4 to 0.5 mg P∕L), 90% (420 to 43 mg COD∕L), and 98% (22.1 to 0.4 mg N∕L), respectively. However, the effluent nitrate concentrations were relatively high (10 mg N∕L), due to a slower endogenous nitrate respiration rate.  相似文献   

4.
The leachate from a Hong Kong landfill, containing 15,700 mg∕L of chemical oxygen demand (COD) and 2,260 mg∕L of ammonia nitrogen (NH3–N), was first treated in a UASB (upflow anaerobic sludge blanket) reactor at 37°C. The process on average removed 90.4% of COD with 6.6 days of hydraulic retention at an organic loading rate of 2.37 g of COD∕L?day. The UASB effluent was further treated by the Fenton coagulation process using H2O2 and Fe2+. Under the optimal condition of 200 mg of H2O2∕L and 300 mg of Fe2+∕L and an initial pH of 6.0, 70% of residual COD in the UASB effluent was removed, of which 56% was removed by coagulation∕precipitation and only 14% by free radical oxidation. It is obvious that H2O2 and Fe2+ had a strong synergistic effect on coagulation. The average COD in the final effluent was 447 mg∕L. Removing each gram of COD required 0.28 g of Fe2+ and 0.18 g of H2O2.  相似文献   

5.
Conventional anaerobic mesophilic (AnM) digestion coupled with anaerobic thermophilic (AnT) pretreatment (AnTAnM system) and anaerobic thermophilic posttreatment (AnMAnT system) of mixed sludge (thickened waste activated sludge and primary sludge) was investigated. The main objectives were to investigate the ability of AnTAnM and AnMAnT systems to produce a product sludge that can meet Class A sludge requirements and to enhance sludge treatment in terms of volatile solids (VS) destruction, gas production, sludge supernatant chemical oxygen demand (COD) reduction, and sludge dewaterability. Lab-scale AnTAnM and AnMAnT systems were operated at a system sludge residence time of 15 days and temperature of 62°C in AnTAnM and AnMAnT thermophilic reactors. A lab-scale control anaerobic digester was operated at a system sludge residence time of 15 days and temperature of 37°C. The AnTAnM and AnMAnT systems and control achieved VS reductions of >38% (Class A sludge vector attraction reduction requirement). Average VS reductions by the AnTAnM (61%) and AnMAnT (63%) systems were significantly higher than VS reduction by the control (50%). The fecal coliform densities in the AnTAnM and AnMAnT system product sludges were below 1,000 most probable number (MPN) per gram total solids (TS) (Class A sludge fecal coliform density limit) compared to 106 MPN∕g TS in the control product sludge. The product sludge from the AnTAnM and AnMAnT systems and the control anaerobic digester met the Class A sludge Salmonella density limit (<3 MPN∕4 g TS) when fed with feed sludge containing 2–12 MPN∕g TS. Average methane production by the AnTAnM mesophilic digester (0.66 ± 0.10 m3∕kg VS destroyed) was higher than those of the AnMAnT (0.51 ± 0.06 m3∕kg VS destroyed) and the control anaerobic mesophilic digesters (0.52 ± 0.03 m3∕kg VS destroyed). The average supernatant CODs in the AnTAnM system product sludge (10,500 ± 200 mg∕L) and AnMAnT system product sludge (10,200 ± 150 mg∕L) were approximately the same and were significantly lower than the supernatant COD in the control anaerobic digester (14,100 ± 350 mg∕L). All three systems were fed with feed sludge containing an average supernatant COD of 22,500 mg∕L. Dewaterability of the product sludges, measured as time to filter, was 244 and 207 s for AnTAnM and AnMAnT systems, respectively, whereas it was 364 s for the control anaerobic digester product sludge.  相似文献   

6.
A laboratory study using the upflow anaerobic sludge blanket reactor for treating high-strength wastewater containing tetrachloroethene (PCE) was carried out to study the effect of carbon source, recycle, and shock loading on dehalogenation of PCE and process performance. The PCE was dehalogenated to trichloroethylene, cis-1,2-dichloroethylene, vinyl chloride, and ethylene. During the study on the effect of carbon source, the PCE and COD removal up to 97% and biogas production of 0.518–0.47 m3∕kg CODrem with methane content up to 66% were achieved under steady-state operating conditions. An increase in the influent COD from 2,000 to 4,000 mg∕L did not show any improvement in the PCE removal. Recycling of effluent at 50% showed the decrease in COD removal and increase in the effluent concentration of dichloroethylene and vinyl chlorides. Around 1–3.5% of influent PCE stripping to biogas was observed. It was observed that methanol has the stimulatory effect on the dehalogenation of PCE. A shock loading study showed that the upflow anaerobic sludge blanket reactor could assimilate 1.5–2 times the original PCE concentration (50 mg∕L) without much effect on the process performance.  相似文献   

7.
Feasibility of the upflow anaerobic sludge blanket (UASB) process was investigated for the treatment of tapioca starch industry wastewater. After removal of suspended solids by simple gravity settling, starch wastewater was used as a feed. Start-up of a 21.5-L reactor with diluted feed of approximately 3,000 mg∕L chemical oxygen demand (COD) was accomplished in about 6 weeks using seed sludge from an anaerobic pond treating tapioca starch wastewater. By the end of the start-up period, gas productivity of 4–5 m3/m3r?day was obtained. Undiluted supernatant wastewater with a COD concentration of 12,000–24,000 mg∕L was fed during steady-state reactor operation at an organic loading rate of 10–16 kg COD/m3r?day. The upflow velocity was maintained at 0.5 m∕h with a recirculation ratio of 4:1. COD conversion efficiencies >95% and gas productivity of 5–8 m3/m3r?day were obtained. These results indicated that removal of starch solids from wastewater by simple gravity settling was sufficient to obtain satisfactory performance of the UASB process.  相似文献   

8.
A continuous-flow intermittent aeration (IA) process has been studied for nitrogen removal from anaerobically digested swine wastewater with high ammonium content. High nitrogen removal efficiency of average 91% total Kjeldahl nitrogen and 92% NH4-N was achieved in an IA system with an alteration of 1-h aeration and 1-h nonaeration. Nitrification and denitrification were found to be responsible for the nitrogen removal in the system. Nitrite and nitrate in the effluent were less than 1.0 mg∕L and 8.0 mg∕L, respectively. The specific nitrification and denitrification rates of the single-sludge IA culture were determined through batch experiments as 2.79–3.70 mgNO3-N∕g volatile suspended solids-h and 0.59–1.03 mgNO3-N∕g volatile suspended solids-h, respectively. In the IA process, the aeration period created favorable conditions for nitrifying bacteria (dissolved oxygen = 4–6 mg∕L and oxidation-reduction potential = 80–100 mV), while the nonaeration period provided good environment for denitrifying bacteria (dissolved oxygen < 1 mg∕L and oxidation-reduction potential as low as 0 mV). Ammonia volatilization in the IA process was negligible (<0.008%). Denitrification activity in the IA process prevented nitrate from accumulation and significant pH change in the system, which is critical for nitrogen removal from swine wastewater with high ammonium content.  相似文献   

9.
Color removal from cotton textile processing wastewater by addition of powdered activated carbon (PAC) into a lab-scale activated sludge system was examined. The activated sludge system was continuously operated in different sludge ages (SRTs) and hydraulic retention times (HRTs). SRT = 30?d and HRT = 1.6?d operation resulted in up to 36% color removal and 94% COD removal. PAC was added 100, 200, and 400 mg/L into the activated sludge system under these operating conditions. The results indicated that 100 mg/L PAC was sufficient to remove the maximum color measured (up to 50 m?1) from the wastewater. The addition of PAC did not affect chemical oxygen demand (COD) removal significantly. Oxygen uptake rate (OUR) tests were also performed to investigate the microbial activities controlling the system performance. The average OUR was 74.1 mg/L/h without PAC addition while it was 70 mg/L/h with PAC addition. Adsorbable organic halogens of the effluent wastewater decreased from 400 to 50 μg/L with the addition of PAC. Toxicity dilution factor decreased from 2 to 1.5 with the PAC addition into the activated sludge system.  相似文献   

10.
A pilot-scale experiment was carried out to study the simultaneous removal of nitrogen and phosphorous from municipal wastewater by an innovative continuous-flow integrated biological reactor (CIBR) process. A three-phase separator was used in the CIBR process, which not only saved energy consumption of sludge returning, but also solved the sludge–gas separating problem. The optimal working condition was 2?h aeration, 1?h agitation, and 1?h settling, with an energy consumption of 0.23?kW?h/m3. The average removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+–N), total nitrogen (TN), and total phosphorus (TP) under the optimal conditions were 72.87, 75.23, 61.25, and 68.25%, respectively. The distributing rules of dissolved oxygen, pH, mixed liquid suspended solid, COD, NH4+–N, NO3?–N, TN, and TP in each phase of CIBR was studied. It was indicated that the appropriate condition was created for the simultaneous removal of nitrogen and phosphorus in the integrated reactor. The study demonstrated the feasibility of using CIBR process for simultaneous removal of nitrogen and phosphorus at the average temperature 12.2°C.  相似文献   

11.
The efficiency of a sequencing batch reactor in denitrification of drinking water with relatively high nitrate concentrations (40–250 mg∕L as N) was evaluated. Ethanol at a COD∕N of 2.00 was found sufficient to reduce nitrate concentrations to acceptable levels (<10 mg∕L as N). Within the first 6 min of reaction, nitrite accumulation in the range of 0.03–3.5 mg∕L as N was observed increasing with the increase of initial nitrate concentrations. In the first hour, nitrate removal was significantly high in the range of 85.7–91.5%. Anoxic reaction times of 3, 5, and 7 h were required for nitrate concentrations of 40–160, 200, and 250 mg∕L (as N) to achieve acceptable levels of nitrate and nitrite. Alkalinity of the denitrified water increased on average by 3.53 mg as CaCO3 for each milligram of nitrate reduced and pH increased from 7.3 to the range of 8 to 9. Idle times between the operation cycles, in the range of 1–14 h, had an insignificant effect on denitrification. Residual COD concentrations in the range of 5–15 mg∕L and sulfide concentrations (at initial nitrate concentrations ≥120 mg∕L as N) in the range of 0.2–0.4 mg∕L were recorded in the finished water. Elevated concentrations of COD in general are not advisable in drinking water, and specifically in this case, it could result in toxic sulfide formation in the treated water. There is a need to further study the optimization of the use of ethanol and polishing of the treated water. A sequencing batch reactor has the potential of being used as an alternative configuration for biological denitrification of drinking water.  相似文献   

12.
Design and operation of saline wastewater treatment systems are difficult because of adverse effects of salt on microbial flora. Quantification and modeling of salt inhibition effects are essential in designing biological treatment processes for saline wastewater. Synthetic wastewater containing 0–10% salt (NaCl) was treated in a rotating biodisc contactor (RBC) unit operating in a continuous mode. Effects of important process variables such as the A∕Q ratio, COD loading rate, and salt concentration on COD removal rate and efficiency were investigated. The system's performance improved with an increasing A∕Q ratio; however, performance decreased with an increasing COD loading rate and salt content. The liquid phase was aerated to keep suspended cells active at high feed COD concentrations such as S0 = 5,000 mg∕L. A mathematical model was developed to describe the system's behavior. Model parameters were determined by using the experimental data. Salt inhibition was found to be significant for salt concentrations larger than 2% NaCl. The experimental results and mathematical model may be used in design of RBC units treating saline wastewater.  相似文献   

13.
A laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used in this study to produce granular sludge at mesophilic temperatures (35 ± 1°C). After more than 150 days of operation, a COD removal efficiency of 95% was achieved with an organic loading rate of 8.73 gCOD∕L∕day. At the same time, the sludge granulation process was observed. The mature granules were examined for their stability in terms of the presence of calcium ion, surfactant, pH (buffer and H2SO4∕NaOH solution), metabolic inhibitor (iodoacetic acid and sodium fluoride), and proton translocator (carbonyl cyanide m-chlorophenyl-hydrazone). The results showed that bacterial surface dehydration, biological metabolic activity, and proton translocating activity were directly related to the strength of UASB granules. This indicated that the proton translocating activity on bacterial surfaces was the crucial factor in sludge granulation and, as a consequence, supported the proton translocation-dehydration theory. Experimental results from other studies were also used to support this new theory.  相似文献   

14.
This study examined the effects of COD:N:P ratio on nitrogen and phosphorus removal in a single upflow fixed-bed filter provided with anaerobic, anoxic, and aerobic conditions through effluent and sludge recirculation and diffused air aeration. A high-strength wastewater mainly made of peptone, ammonium chloride, monopotassium phosphate, and sodium bicarbonate with varying COD, N, and P concentrations (COD: 2,500–6,000, N: 25–100, and P: 20–50 mg/L) was used as a substrate feed. Sodium acetate provided about 1,500 mg/L of the wastewater COD while the remainder was provided by glucose and peptone. A series of orthogonal tests using three factors, namely, COD, N, and P concentrations, at three different concentration levels were carried out. The experimental results obtained revealed that phosphorus removal efficiency was affected more by its own concentration than that of COD and N concentrations; while nitrogen removal efficiency was unaffected by different phosphorus concentrations. At a COD:N:P ratio of 300:5:1, both nitrogen and phosphorus were effectively removed using the filter, with removal efficiencies at 87 and 76%, respectively, under volumetric loadings of 0.1?kg?N/m3?d and 0.02?kg?P/m3?d.  相似文献   

15.
Laboratory-scale experiments were conducted to determine optimum sludge residence time (SRT) and temperature of aerobic thermophilic pretreatment (ATP) of mixed sludge (thickened waste activated sludge and primary sludge) to achieve maximum pathogen reduction and best process performance. 4-L laboratory-scale ATP reactors were operated at SRTs of 0.6, 1.0, and 1.5 days and temperatures of 55, 58, 62, and 65°C. ATP at temperatures ≥62°C and SRT ≥0.6 day reduced the feed sludge fecal coliform density from 107 MPN∕g total solids (TS) to <104 MPN∕g TS. Salmonella in the feed sludge was reduced to <1 MPN∕4 g TS from 2 to 18 MPN∕4 g TS by ATP at temperatures ≥55°C and SRT ≥0.6 day. ATP was able to increase sludge volatile acids concentration by 100–200% over the feed sludge volatile acid concentration and to reduce sludge supernatant chemical oxygen demand from 20,000 to 22,000 mg∕L in the feed to 13,000–17,000 mg∕L in the ATP reactor. Volatile solids reduction by ATP increased from 25 to 40% when SRT was increased from 0.6 to 1.5 days, and a 5% increase in volatile solids reduction was seen at SRTs of 0.6, 1.0, and 1.5 days when ATP temperature was increased from 55 to 65°C.  相似文献   

16.
Acetate Limitation and Nitrite Accumulation during Denitrification   总被引:4,自引:0,他引:4  
Nitrite accumulated in denitrifying activated sludge mixed liquor when the carbon and electron source, acetate, was limited. If acetate was added to obtain a carbon-to-nitrogen (C:N) ratio in the range of 2:1 to 3:1, nitrate was completely consumed at the same rate with no nitrite accumulation, indicating that nitrate concentration controlled the respiration rate as long as sufficient substrate was present. However, when acetate was reduced to a C:N ratio of 1:1, while nitrate continued to be consumed, >50% of the initial nitrate-nitrogen accumulated as nitrite and 29% persisted as nitrite throughout an endogenous denitrification period of 8–9 h. While nitrite accumulated during acetate-limited denitrification, the specific nitrate reduction rate increased significantly compared with the rate when excess acetate was provided as follows: 0.034 mg-NO3-N∕mg-mixed liquid volatile suspended solids∕h versus 0.023 mg-NO3-N∕mg-mixed liquid volatile suspended solids∕h, respectively. This may be explained by nitrate respiration out-competing nitrite respiration for limited acetate electrons. Complete restoration of balanced denitrification and elimination of nitrite accumulation during denitrification required several weeks after the C:N ratio was increased back to 2:1.  相似文献   

17.
Current activated sludge models consider that the removal of biodegradable organics by suspended growth includes rapid enmeshment of the organic particles in the microbial floc, hydrolysis of the complex organic molecules into readily biodegradable organic substances, and oxidation of dissolved organic substances. All of the models assume hydrolysis is the rate-limiting step, but none consider the role that the kinetics of biological flocculation and the sludge settling characteristics may play in defining the activated sludge operating parameters. Several researchers have studied the kinetic of biological flocculation, and have analyzed its role on the removal of particulate COD in suspended growth reactors. It has been demonstrated that a large proportion of the organic matter present in sewage can be removed by biological flocculation using short hydraulic retention times and subsequent settling. This paper demonstrates that the one-dimensional limiting flux theory may be useful for coupling the sludge settling properties with the aeration tank behavior, and is a reasonable first approximation that can be used for activated sludge system design and operation.  相似文献   

18.
A pilot-scale, first-stage, autothermal thermophilic aerobic digestion reactor was used to study the effect of microaerophilic conditions on sludge solids destruction, volatile fatty acids (VFA) production, and phosphorus release. For the aeration rates of 0–100 mL∕min and the reactor sludge volume of 72 L, with a primary to secondary sludge ratio of 35:65, the solids destruction efficiency ranged between 19.5 and 23.8%, as measured by total suspended solids (TSS). The maximum increase in VFA concentration (483 mg∕L as acetic acid) occurred at the low airflow rate of 25 mL∕min. The unit VFA production ranged from 0.009 to 0.183 mg of VFA generated∕mg of TSS destroyed, with the dominance of acetic acid. The milligrams of phosphorus released per milligrams of TSS destroyed was from 0.018 to 0.0312, with the maximum measured when no air (nitrogen) was supplied; but the maximum ratio of VFA to PO4 (equal to 8.2) was measured when the air supply was at 25 mL∕min.  相似文献   

19.
The treatment of effluent of pilot- and full-scale upflow anaerobic sludge blanket (UASB) reactors operating at steady state was studied in an aeration-settling system. The fine pore submerged diffusers were used to aerate the effluent of UASB reactors under different operating conditions. Forty to 55% of the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD) removal efficiencies were achieved by the direct aeration of the UASB effluent in the laboratory. The maximum removal efficiencies were achieved at 30?min hydraulic retention time (HRT) and a dissolved oxygen (DO) of 5–6??mg/L or high KLa (vigorous aeration). Batch experiments on nitrogen purging and the aeration of sulfides, volatile organic compounds (VOCs), and nonpurgeable organic carbons (NPOCs) were performed to ascertain the mechanism of BOD/COD removal. During aeration, BOD and COD were reduced by the stripping of H2S and VOCs and by the chemical oxidation of total sulfides and organic carbon. The stripping and chemical oxidation depended on the HRT and DO. The performance of a full-scale surface aeration system was compared to the performance of a pilot-scale diffused aeration system. Final sedimentation was effective only in removing the solids from the effluent of the aeration system. The results were confirmed by organic mass balance.  相似文献   

20.
Models ranging through simple, intermediate, and International Water Association complex activated sludge models (ASMs) were evaluated to compare their ability to describe biomass growth and substrate removal in an activated sludge system. A membrane-activated sludge bench-scale system was used to treat a complex synthetic wastewater over a wide range of operating conditions, ranging from 1 to 15 days solids retention time and 4 to 12 h hydraulic retention time. Total suspended solids, volatile suspended solids (VSSs), and total and soluble chemical oxygen demands (CODs) were monitored in the influent, the reactor, and the effluent. A variety of substrate removal formulations were used with the simple and intermediate models. Although all models provide excellent prediction of biomass growth, the intermediate model was best. Prediction of substrate removal was good with models that incorporated a nonbiodegradable component in the influent. ASM3 was the best model for predicting effluent soluble COD, but overall, the intermediate model was judged best for prediction of mixed liquor VSS and effluent soluble COD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号