首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Anaerobic and aerobic treatment of high-strength pharmaceutical wastewater was evaluated in this study. A batch test was performed to study the biodegradability of the wastewater, and the result indicated that a combination anaerobic-aerobic treatment system was effective in removing organic matter from the high-strength pharmaceutical wastewater. Based on the batch test, a pilot-scale system composed of an anaerobic baffled reactor followed by a biofilm airlift suspension reactor was designed. At a stable operational period, effluent chemical oxygen demand (COD) from the anaerobic baffled reactor ranged from 1,432 to 2,397?mg/L at a hydraulic retention time (HRT) of 1.25 day, and 979 to 1,749?mg/L at an HRT of 2.5 day, respectively, when influent COD ranged from 9,736 to 19,862?mg/L. As a result, effluent COD of the biofilm airlift suspension reactor varied between 256 and 355?mg/L at HRTs of from 5.0 to 12.5 h. The antibiotics ampicillin and aureomycin, with influent concentrations of 3.2 and 1.0?mg/L, respectively, could be partially degraded in the anaerobic baffled reactor: ampicillin and aureomycin removal efficiencies were 16.4 and 25.9% with an HRT of 1.25 day, and 42.1 and 31.3% with HRT of 2.5 day, respectively. Although effective in COD removal, the biofilm airlift suspension reactor did not display significant antibiotic removal, and the removal efficiencies of the two antibiotics were less than 10%.  相似文献   

2.
Feasibility of the upflow anaerobic sludge blanket (UASB) process was investigated for the treatment of tapioca starch industry wastewater. After removal of suspended solids by simple gravity settling, starch wastewater was used as a feed. Start-up of a 21.5-L reactor with diluted feed of approximately 3,000 mg∕L chemical oxygen demand (COD) was accomplished in about 6 weeks using seed sludge from an anaerobic pond treating tapioca starch wastewater. By the end of the start-up period, gas productivity of 4–5 m3/m3r?day was obtained. Undiluted supernatant wastewater with a COD concentration of 12,000–24,000 mg∕L was fed during steady-state reactor operation at an organic loading rate of 10–16 kg COD/m3r?day. The upflow velocity was maintained at 0.5 m∕h with a recirculation ratio of 4:1. COD conversion efficiencies >95% and gas productivity of 5–8 m3/m3r?day were obtained. These results indicated that removal of starch solids from wastewater by simple gravity settling was sufficient to obtain satisfactory performance of the UASB process.  相似文献   

3.
Wastewater from a corn wet-milling ethanol plant was treated with Rhizopus microsporus mold in a continuous biofilm reactor (attached growth system). Plastic composite support tubes, composed of 50% (w/w) polypropylene and 50% (w/w) agricultural products were used as support media. The effects of operating pH (3.5, 4.0, and 4.5) and hydraulic retention times (HRTs) (5.0, 3.75, 2.5, and 1.25 h) on fungal growth, chemical oxygen demand (COD) removal and unwanted bacterial growth were evaluated under nonaseptic conditions. COD removal and biomass production were highest at pH 4.0 with lowest bacterial competition. Maximum COD removal of up to 80% was achieved at a 5.0 h HRT with a biomass yield of 0.44 g volatile suspended solids per g COD removed. A higher biomass yield was achieved at a shorter HRT of 2.5 h due to increased substrate availability; however, the biofilm was more sensitive to changes in wastewater composition. A HRT of 3.5–4 h was considered optimal in achieving organic removal and fungal biomass production. Significant loss of fungal biomass due to washout occurred at a 1.5 h HRT. Undesirable bacterial populations as a fraction of total biomass decreased with reducing HRT, excluding the 1.25 h HRT. Reductions in COD removal and biomass production were observed with decreases in aeration rate (1.0–0.25 L/min or 0.8–0.2 vvm (air volume per reactor working volume per minute). The recovered fungal biomass was found to contain protein of up to 40% (dry mass basis), which could serve as a source of high-value animal feed.  相似文献   

4.
A continuous flow flat sheet hybrid membrane aerated biofilm reactor (MABR) was used to treat a synthetic wastewater containing perchloroethylene (PCE); 1.25–2.5?g chemical oxygen demand (COD)/L of glucose was also added to the synthetic wastewater as a source of COD representative of a real wastewater. The reactor was able to biodegrade 70?mg?L?1 of PCE in 9?h without the accumulation of any intermediate compounds, resulting in a removal rate of 247?mmol of PCE?h?1?m?3 in a reactor with a specific membrane area of 4.048?m2?m?3. MABRs have never been used before for PCE degradation, and this rate is one of the highest volumetric PCE degradation rates reported in the literature. COD removal was also good and varied from 85 to 92%. Since very few volatile fatty acids accumulated in the system, most of the residual COD was attributed to soluble microbial products as reported by previous researchers. A mass balance on chloride during this study showed that only 72–81% of it could be accounted for. It is probable that some of the chlorinated ethenes were adsorbed onto the biofilm or that aerobic intermediates of low-chlorinated compounds such as trichloroethanol, dichloroacetyl, and chloroacetaldehyde were produced in the system. Nevertheless the chloride mass balance in this work compares well with the literature. Due to their high PCE and COD removal rates, hybrid MABRs have the potential to be used for a number of refractory organics which require combined anaerobic/aerobic biological treatment for degradation.  相似文献   

5.
6.
Design and operation of saline wastewater treatment systems are difficult because of adverse effects of salt on microbial flora. Quantification and modeling of salt inhibition effects are essential in designing biological treatment processes for saline wastewater. Synthetic wastewater containing 0–10% salt (NaCl) was treated in a rotating biodisc contactor (RBC) unit operating in a continuous mode. Effects of important process variables such as the A∕Q ratio, COD loading rate, and salt concentration on COD removal rate and efficiency were investigated. The system's performance improved with an increasing A∕Q ratio; however, performance decreased with an increasing COD loading rate and salt content. The liquid phase was aerated to keep suspended cells active at high feed COD concentrations such as S0 = 5,000 mg∕L. A mathematical model was developed to describe the system's behavior. Model parameters were determined by using the experimental data. Salt inhibition was found to be significant for salt concentrations larger than 2% NaCl. The experimental results and mathematical model may be used in design of RBC units treating saline wastewater.  相似文献   

7.
A predenitrification system consisting of an ultracompact biofilm reactor (UCBR) and a packed bed column was used for removing nitrogen from synthetically simulated wastewater. The UCBR column was maintained under aerobic conditions to favor nitrification process, while the packed bed column was operated under an anoxic environment for denitrification process. A peristaltic pump was used to recycle fluid between the anoxic-packed bed and aerobic-UCBR columns to facilitate nitrogen removal. Five recycle ratios (R) were investigated, namely, 3, 4, 5, 6, and 10. The highest average total nitrogen (TN) removal rate was achieved at R = 4. The NH4+–N, TN, and chemical oxygen demand (COD) removal rates at this R were 0.56±0.05?kg NH4+–N/m3/day, 0.39±0.09?kg TN/m3/day, and 1.83±0.18?kg COD/m3/day, respectively. It was noted that poor nitrification in the UCBR was accompanied by a corresponding reduction in overall TN removal efficiency. This observation suggested that nitrification process was the limiting step for TN removal in this setup. Thus, the performance of this predenitrification system could be enhanced by optimizing the performance of the nitrification process.  相似文献   

8.
The efficiency of two similar gas-lift bioreactors, a biofilm reactor and a hybrid circulating floating bed reactor (CFBR), were studied and compared. In the biofilm CFBR the biomass grew preferably adhered on a plastic granular support, whereas in the hybrid CFBR both suspended biomass and biofilms were allowed to grow in the reactor. COD/NH4+ ratio (COD=chemical oxygen demand) was manipulated between 0.0 and 8.0?g/g, maintaining the ammonia influent concentration around 50?mg N–NH4+/L, the ammonia loading rate at 0.9?kg N–NH4+/m3?day and the hydraulic retention time at 1.36?h. At low COD/NH4+ ratio (0 and 0.5?g/g) both systems behaved similarly, achieving ammonia removal percentages higher than 95%. In the biofilm CFBR a reduction of the nitrification percentage from 95 to 20% was observed when a COD/N–NH4+ ratio up to 8?g/g was applied in the influent. However, at the same operational conditions, the nitrification process in the hybrid CFBR was slightly affected. In the hybrid-CFBR reactor heterotrophs growing in suspension consumed the COD source faster than those growing in biofilms as was monitored. The growth of heterotrophic microorganism in suspension had a beneficial effect for the nitrifying population growing in the biofilm of the hybrid CFBR. Nitrifying activity of the biofilm was not limited by the presence of heterotrophs consuming dissolved oxygen, displacing the nitrifying bacteria or creating mass transfer resistance as was observed in the biofilm CFBR.  相似文献   

9.
A hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with an effluent recycle was used for biological treatment of 2,4,6 tri-chlorophenol (TCP) containing synthetic wastewater. The effects of sludge age (solids retention time) on chemical oxygen demand (COD), TCP, and toxicity removal performance of the system were investigated for sludge ages between 5 and 30?days, while the feed COD (2600±100?mg?L?1), TCP (370±10?mg?L?1), and the hydraulic residence time (25?h) were constant. Percent TCP, COD, and toxicity removals increased with increasing sludge age resulting in nearly complete COD, TCP, and toxicity removal at sludge ages above 20?days. Biomass concentrations in the packed column and in the aeration tank increased with increasing sludge age resulting in low reactor TCP concentrations, and therefore, high TCP, COD, and toxicity removals. More than 95% of COD, TCP, and toxicity removal took place in the packed column reactor. Volumetric rates of TCP and COD removal increased due to increasing biomass and decreasing effluent TCP and COD concentrations with increasing sludge age. The specific rate of TCP removal was maximum (120?mg?TCP?gX?1?day?1) at a sludge age of 20?days. TCP inhibition was eliminated by operation of the system at sludge age above 20?days to obtain nearly complete COD, TCP, and toxicity removal.  相似文献   

10.
The impact of chemical oxygen demand/nitrogen (COD/N) values of feed wastewater on COD and nitrogen removal and biomass growth in a sequencing fed-batch reactor (SFBR) operation was investigated. The multiple microbial reactions involved in the simultaneous removal process of carbonaceous and nitrogenous components in the SFBR system were analyzed using a set of kinetics mathematical model. The results indicate that COD/N ratios strongly influence COD and total nitrogen removal efficiency. The COD removal efficiency per gram microorganism changed from 64.3 to 78.1% at COD/N = 11.9–2.5. The total nitrogen removal efficiency changed from 10.3 to 34.2% at COD/N = 2.5–11.9. However, variable COD/N ratios of feed wastewater are not marked for biomass growth rate.  相似文献   

11.
Performance stability of a biofilm airlift suspension reactor (BASR) was studied using ethanol as a substrate. The main objective of this research was to investigate the applicability of the reactor as a wastewater treatment process by examining the effects of soluble chemical oxygen demand (SCOD) loading rate and hydraulic retention time (HRT) on the performance of the reactor. SCOD removal of 90% or higher was achieved at an HRT of 45 min with loading rates from 10 to 18 kg SCOD/m3?day. Similar results were obtained at HRTs of 60 and 90 min and a SCOD loading rate of 10 kg SCOD/m3?day. Nitrification occurred in the system when the ratio of SCOD to ammonia nitrogen was changed from 10:1 to 6:1. The morphology of the biofilm in the BASR was denser and thicker when nitrifiers grew in the biofilm. Filamentous overgrowth was observed from time to time and proper chlorine dose successfully suppressed its growth. The oxygen uptake rate was an effective tool for monitoring the effect of chlorination.  相似文献   

12.
Three 3?L laboratory scale submerged anaerobic membrane bioreactors (SAMBRs) with in situ membrane cleaning due to the bubbling of recycled biogas underneath them were studied for their ability to treat dilute wastewaters. Both Mitsubishi Rayon hollow-fiber and Kubota flat sheet membranes made of polyethylene with a pore size of 0.4?μm were used in this study, and the effect of different substrates (460?mg/L of glucose or synthetic) on chemical oxygen demand (COD) performance in the SAMBR was investigated. It was found that both membranes resulted in similar COD removals (>90% soluble COD at a hydraulic retention time of 3?h), but that the transmembrane pressure across the hollow fiber membranes was higher under similar conditions. Molecular weight analysis of the feed, reactor contents, effluent, and extracellular polymers using high pressure liquid chromatography showed that the membrane filtered out most of the high MW soluble organics, resulting in high COD removals. The experimental results from the SAMBR show the potential benefits of using this novel reactor design in a biological wastewater treatment process to minimize energy use and sludge production.  相似文献   

13.
The use of aerobic granules in wastewater treatment can reduce the land area that is needed for the treatment of sewage. Until now granulation has been mainly studied using artificial wastewater. Studying the possibility of forming aerobic granules on domestic sewage in a sequencing batch reactor was a logical step in the scaling-up process and development of this technology. Therefore, aerobic granulation was studied using presettled sewage as influent. After 20?days of operation at high chemical oxygen demand (COD) loading heterogeneous aerobic granular structures were observed, with a sludge volume index after 10?min settling of 38?mL?g?1 and an average diameter of 1.1?mm. Applying a high COD load was found to be a critical factor for the formation of aerobic granules on this type of influent. Therefore short cycle times and concentrated wastewater are preferred to form granules in a sequencing batch reactor when low strength wastewater is used. The nutrient removal was not optimized in this study.  相似文献   

14.
The performance of a sequencing batch biofilter integrating anaerobic/aerobic conditions in one tank to treat a pharmaceutical wastewater effluent was studied. A pilot reactor, packed with a porous volcanic stone (puzzolane) was used in the study. The reactor operated as a sequencing batch biofilter, SBB, with reaction times varying for the anaerobic stage from 8 to 24 h and for the aerobic one from 4 to 12 h. The volume of exchange was from 16 to 88%. The pharmaceutical wastewater contained organic chemicals including phenols and o-nitroaniline, a concentration of organic matter that varied from 28,400 to 72,200 mg/L (as total COD), 280 to 605 mg N-NH4/L. and 430 to 650 mg SST/L. In order to acclimatize the microorganisms to the industrial wastewater, the organic load was increased stepwise from 1 to 7.7 kg COD/m3/d. The adequate time was obtained when the removal efficiency of COD reached 80%, or more. Maximal removal loads, associated to high removal efficiencies (95-97% as COD), varied from 4.6 to 5.7 kg COD/m3/d. Under these conditions color removal was 80% as Pt-Co units. Microtox analysis was performed to the wastewater and to the anaerobic and aerobic stages. It was observed that the aerobic stage was the responsible for wastewater detoxification. Results showed that the anaerobic/aerobic SBB was able to treat efficiently initial concentrations of the raw effluent up to 28,400 mg COD/L.  相似文献   

15.
The sludge production and settleability have been estimated experimentally in a completely mixed biofilm-activated sludge reactor (hybrid reactor). A steady-state hybrid reactor was run at different stages of suspended biomass concentration (X) under constant values of influent substrate concentration (So) and hydraulic retention time (HRT). The values of X were gradually decreased in these stages until the system completely washed out of the suspended biomass and converted to pure biofilm reactor. As a result, the role of biofilm in the treatment gradually increased with an increase in the effluent substrate concentration (S). The experiment was supported by a mathematical expression for describing the sludge yield in the system under the previous conditions. The experimental and theoretical studies in the present work reveal that there is a critical phase of the hybrid system at which the system produces a high rate of excess sludge. That critical phase is found at a specific ratio between the suspended and the attached growth. Avoiding that critical phase enables the sludge production in the hybrid reactor to be reduced and optimized. Further, the minimum sludge production was found when the biofilm is theoretically inactive for chemical oxygen demand (COD) removal (S相似文献   

16.
采用载体吸附法的固定化方式培养了高活性的厌氧生物膜颗粒,并研究了反应器的启动运行、工艺特性及污泥特性等规律,探索用生物膜颗粒取代厌氧颗粒污泥的可行性,以缓解国内颗粒污泥供应不足的问题.实验装置采用厌氧附着膜膨胀床,投加人工配水,裸载体为陶粒(湿视密度1310kg·m-3,平均粒径0.32mm).实验分初次启动、二次启动及稳定运行两个阶段进行,反应器仅需24d就可完成启动,COD容积负荷最高达到18kg·m-3·d-1,相应的COD去除率在70%~80%之间.  相似文献   

17.
A laboratory study using the upflow anaerobic sludge blanket reactor for treating high-strength wastewater containing tetrachloroethene (PCE) was carried out to study the effect of carbon source, recycle, and shock loading on dehalogenation of PCE and process performance. The PCE was dehalogenated to trichloroethylene, cis-1,2-dichloroethylene, vinyl chloride, and ethylene. During the study on the effect of carbon source, the PCE and COD removal up to 97% and biogas production of 0.518–0.47 m3∕kg CODrem with methane content up to 66% were achieved under steady-state operating conditions. An increase in the influent COD from 2,000 to 4,000 mg∕L did not show any improvement in the PCE removal. Recycling of effluent at 50% showed the decrease in COD removal and increase in the effluent concentration of dichloroethylene and vinyl chlorides. Around 1–3.5% of influent PCE stripping to biogas was observed. It was observed that methanol has the stimulatory effect on the dehalogenation of PCE. A shock loading study showed that the upflow anaerobic sludge blanket reactor could assimilate 1.5–2 times the original PCE concentration (50 mg∕L) without much effect on the process performance.  相似文献   

18.
Anaerobic degradation of phenol mixed with a readily degradable synthetic wastewater (DSWW) as a cosubstrate was studied in a 12?L upflow anaerobic sludge blanket reactor at 30±2°C over a period of 632?days. DSWW was prepared by diluting sugar cane based molasses. The biomass was acclimatized to high phenol concentration by gradually decreasing the DSWW chemical oxygen demand (COD) of 4,000?mg/L. Feed made up of phenol COD and DSWW COD in the ratio of 7:3 (phenol concentration = 1,176?mg/L) was successfully treated at a hydraulic retention time (HRT) of 12?h and organic loading rate (OLR) of 8?g?COD/L?day. Phenol removal ranged from 99.9 to 84% at phenol COD varying from 10 to 70% in the feed. During the entire operation, COD removal varied from about 74 to 91.3%. The influent COD was distributed into CH4–COD ( ~ 72%), effluent COD ( ~ 17%), and sludge and unaccounted COD ( ~ 11%). The process failure occurred at 4:1 phenol COD: DSWW COD. Specific methanogenic activity of granular sludge exhibited uniform activity up to phenol COD of 70%. The performance of the reactor could not be maintained beyond 70% phenol COD even by reducing the sludge loading rate, increasing HRT, or decreasing OLR.  相似文献   

19.
Understanding that there is a significant presence of extracellular polymeric substances at the biofilm/wastewater interface and that the primary constituent of chemical oxygen demand (COD) in domestic wastewaters is organic particulates, this research describes the kinetics of particulate removal in a pilot-scale trickling filter (TF) and the role of bioflocculation in the removal process. Recent research has described the role of bioflocculation on particulate COD (PCOD) removal in suspended growth biological wastewater treatment systems. However, no research pertaining to PCOD removal by bioflocculation in attached growth systems was identified prior to this study. For this study, experiments were conducted using both bench- and pilot-scale biofilm reactors and provided evidence that the removal of organic and inorganic particulate matter in a TF bioreactor follows a first-order bioflocculation rate equation. The statistical analysis of data obtained from the pilot TF fits the dispersion model to suspended solids and PCOD remaining in the pilot TF.  相似文献   

20.
The static granular bed reactor (SGBR) is a unique high-rate anaerobic reactor designed to operate in a simple downflow manner, offering high chemical oxygen demand (COD) removal efficiencies (greater than 90%) resulting from high biomass retention in the system. A study was performed to evaluate the SGBR versus a control system, the upflow anaerobic sludge blanket (UASB) reactor, and to evaluate performance idiosyncrasies of the SGBR and the control. The two reactors were operated at three different hydraulic retention times (HRTs): 8, 16, and 24 h. The reactors treated synthetic wastewater, intended to simulate food industry waste, composed of sucrose and nonfat dry milk. Overall, COD removal was higher for the SGBR than for the UASB reactor. In particular, at a HRT of 8 h, the SGBR achieved a COD removal of 90.7% and the UASB reactor reduced the COD concentration by 77.5%. The UASB reactor’s specific COD loading factor proved rate limiting with values ranging from 0.19 to 0.94?gCOD/(gVS?d) versus 0.11 to 0.34?gCOD/(gVS?d) for the SGBR. A tracer study idealized hydraulics within the two systems, and the results showed minimal dead volume and 4–6% short circuiting for both reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号