首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, adsorption potential of a new sorbent manganese-oxide-coated alumina (MOCA) was investigated for defluoridation of drinking water using batch and continuous mode experiments. The effects of different parameters such as pH, initial fluoride concentration and co-existing ions (usually present in groundwater sample) were studied to understand the adsorption behavior of the sorbent under various conditions. Optimum removal of fluoride ions occurred in a pH range of 4-7. Results of the present study indicate that fluoride adsorption rate and adsorption capacity of MOCA are far superior to that of activated alumina (AA), which was used as the base material for MOCA preparation. The MOCA can be effectively regenerated using 2.5% NaOH as eluent. The Langmuir equilibrium model was found to be suitable for describing the fluoride sorption on AA and MOCA. The maximum fluoride uptake capacity for MOCA and AA was found to be 2.85 and 1.08 mg g(-1), respectively. The kinetic results showed that the fluoride sorption to MOCA followed pseudo--second-order kinetics with a correlation coefficient greater than 0.98. The fluoride sorption capacity at breakthrough point for both the adsorbents was greatly influenced by bed depth. A bed depth service time (BDST) approach was adopted to describe the continuous flow system. The batch and column studies demonstrated the superiority of MOCA over AA in removing fluoride from the drinking water system.  相似文献   

2.
Dou X  Zhang Y  Wang H  Wang T  Wang Y 《Water research》2011,45(12):3571-3578
In this study, a granular zirconium-iron oxide (GZI) was successfully prepared using the extrusion method, and its defluoridation performance was systematically evaluated. The GZI was composed of amorphous and nano-scale oxide particles. The Zr and Fe were evenly distributed on its surface, with a Zr/Fe molar ratio of ∼2.3. The granular adsorbent was porous with high permeability potential. Moreover, it had excellent mechanical stability and high crushing strength, which ensured less material breakage and mass loss in practical use. In batch tests, the GZI showed a high adsorption capacity of 9.80 mg/g under an equilibrium concentration of 10 mg/L at pH 7.0, which outperformed many other reported granular adsorbents. The GZI performed well over a wide pH range, of 3.5-8.0, and especially well at pH 6.0-8.0, which was the preferred range for actual application. Fluoride adsorption on GZI followed pseudo-second-order kinetics and could be well described by the Freundlich equilibrium model. With the exception of HCO3, other co-existing anions and HA did not evidently inhibit fluoride removal by GZI when considering their real concentrations in natural groundwater, which showed that GZI had a high selectivity for fluoride. In column tests using real groundwater as influent, about 370, 239 and 128 bed volumes (BVs) of groundwater were treated before breakthrough was reached under space velocities (SVs) of 0.5, 1 and 3 h−1, respectively. Additionally, the toxicity characteristic leaching procedure (TCLP) results suggested that the spent GZI was inert and could be safely disposed of in landfill. In conclusion, this granular adsorbent showed high potential for fluoride removal from real groundwater, due to its high performance and physical-chemical properties.  相似文献   

3.
Qi S  Schideman LC 《Water research》2008,42(13):3353-3360
Design and analysis of activated carbon processes in water treatment often requires the adsorption isotherm for dissolved natural organic matter (NOM). Of the isotherm models available, the Summers and Roberts (SR) equation, capable of describing the adsorbent dose effect with the fewest parameters, has been successfully used to normalize NOM isotherm data. In this study, we show that the adsorbent dose in the SR equation can be eliminated as an intermediate variable and the initial concentration effect on NOM adsorption is then described explicitly. Comparing with the original SR equation, the derived isotherm equation is in a form more amenable to analysis. To ensure that the prediction is physically attainable, we introduced the limiting adsorption capacity by taking the adsorbent pore volume and size exclusion into consideration. Subsequently, we develop a simple relationship that can be used to determine the minimum adsorbent usage required for any desirable level of treatment. By comparing with extensive isotherm data previously published by Li et al. [2003a. Polydisperse adsorbability composition of several natural and synthetic organic matrices. J. Colloid Interface Sci. 265(2), 265-275], we demonstrated that the isotherm equation derived herein yields predictions that agree with the much more complicated fictive component-ideal adsorbed solution theory (IAST)-based model for NOM from different sources and over a range of initial concentrations.  相似文献   

4.
Genz A  Kornmüller A  Jekel M 《Water research》2004,38(16):3523-3530
The advanced phosphorus (P) removal by adsorption was studied for its suitability as a post-treatment step for membrane bioreactor (MBR) effluents low in P concentration and particle content. Two commercial adsorbents, granulated ferric hydroxide (GFH) and activated aluminium oxide (AA), were studied in batch tests and lab-scale filter tests for P adsorption in MBR filtrates. GFH showed a higher maximum capacity for phosphate and a higher affinity at low P concentrations compared to AA. Competition by inorganic ions was negligible for both adsorbents at the original pH (8.2). When equilibrium P concentrations exceeded 2 mg L(-1) in the spiked MBR filtrates, a precipitation of calcium phosphates occurred additionally to adsorption. During column studies the effluent criteria of 50 microgL(-1) P was reached after a throughput of 8000 bed volumes for GFH and 4000 for AA. Dissolved organic carbon appears to be the strongest competitor for adsorption sites. A partial regeneration and reloading of both adsorbents could be achieved by the use of sodium hydroxide.  相似文献   

5.
Sze MF  McKay G 《Water research》2012,46(3):700-710
The adsorptive removal of toxic para-chlorophenol using activated carbon adsorption columns is a proven effective engineering process. This paper examined the possibility to stratify an adsorbent bed into layers, in order to enhance the adsorption process performance in terms of increased column service time and adsorbent bed saturation. Four different types of fixed-bed adsorption columns are used and compared under the same operating conditions, but with the variation of column geometry and activated carbon particle size stratification. The Type 3 column - a cylindrical column with particle stratification packing, is found to be the most efficient choice, as the extent of column service time and adsorbent bed saturation are the largest. This could eventually decrease the frequency of adsorbent replacement/regeneration and hence reduce the operating cost of the fixed-bed adsorption process. The Homogeneous Surface Diffusion Model (HSDM) was applied successfully to describe the dynamic adsorption of para-chlorophenol onto Filtrasorb 400 (F400) activated carbon in different types of columns. The Redlich-Peterson isotherm model equation, an experimentally derived external mass transfer correlation and a constant surface diffusivity are used in the HSDM. The optimised surface diffusivity of para-chlorophenol is found to be 1.20E-8 cm2/s, which is in good agreement with other phenolics/F400 carbon diffusing systems in literature.  相似文献   

6.
近年来,饮用水砷污染事件层出不穷,选择高效合适的除砷方法,已成为全球关注的问题.试验采用逆流式单床吸附柱的吸附方式,对活性氧化铝吸附砷做了动态试验研究.研究结果显示,当初始砷浓度为10mg/L时,砷的去除率均在90%以上;当初始砷浓度为50mg/L时,以5mg/L为穿透点,穿透体积为110L,动态吸附量为3.43mg/g.结果表明,在水中砷的去除方面,活性氧化铝可作为一种有效吸附剂.该研究对实际应用中的活性氧化铝改性及饮用水处理具有重要意义.  相似文献   

7.
Ren YX  Nakano K  Nomura M  Chiba N  Nishimura O 《Water research》2007,41(11):2341-2348
The adsorption behaviors of estrone (E1), 17beta-estradiol (E2), estriol (E3), 17 alpha-ethinylestradiol (EE2), and equol were studied with a deactivated sludge subjected to heat treatment at 80 degrees C for 30 min. The heat-treatment hardly changed the adsorption features of activated sludge (AS). The adsorption equilibrium of all estrogens was approached within 10 min at 20 degrees C, and a high removal of estrogens was achieved simultaneously. The equilibrium data were well fitted by a Freundlich isotherm. The adsorption behaviors of E1, E2, E3 and EE2 in the AS system were independent of their Kow values. Thermodynamic analysis revealed that the adsorption behaviors of E1, E2, E3 and EE2 could be considered as an exothermic, physical and reversible process, resulting in their higher adsorption capacities at lower temperature. Regarding equol, its adsorption was an endothermic, chemical and irreversible process.  相似文献   

8.
Amoxicillin's traces within pharmaceutical effluents have toxic impact toward the algae and other lower organisms within food web. Adsorption, as an efficient process to remove contaminants from water was chosen; in particular with bentonite and activated carbon as adsorbents. The study was carried out at several pH values. Langmuir and Freundlich models were then employed to correlate the equilibria data on which both models equally well-fit the data. For kinetic data, pseudo-first and second order models are selected. While chemisorption is the dominant adsorption mechanism on the bentonite case, both physisorption and chemisorption play important roles for adsorption onto activated carbon. Also, several possible mechanisms for these adsorption systems were elaborated further.  相似文献   

9.
With a view to reducing pollution in the aquatic environment, estrone (E1) and 17beta-estradiol (E2) were tested for their absorbability in water onto activated carbons (ACs) with various pore-size distributions. In batch-type adsorption measurements, all adsorption isotherms obtained were found to fit a Freundlich equation. In case of eight different kinds of commercial AC in pure water, the amount adsorbed at equilibrium concentration of 1 microg/L was in the range of 25.6-73.5mg/g for E1 and 21.3-67.6 mg/g for E2. In case of pre-used ACs in water sand-filtered for use as drinking water, the amount adsorbed at 1 microg/L was in the range of 3.5-8.2mg/g for E2. In the case of two commercial ACs in river water and in effluent from secondary clarifier at municipal sewage treatment plant (MSTP), both originally containing E2, was in the range of 0.1-0.2 and 0.3-1 microg/g, respectively, at 1 ng/L. The difference of amount adsorbed onto AC was discussed in view of hydrophobicity of target chemicals, specific surface area and mean pore diameter of AC, and the difference in the absorbability and the ratios of co-present substances for the target compound.  相似文献   

10.
Zhang Y  Zhou JL 《Water research》2005,39(16):3991-4003
Endocrine disrupting chemicals (EDCs) are the focus of current environment concern, as they can cause adverse health effects in an intact organism, or its progeny, subsequent to endocrine function. The paper reports on the removal of estrone (E1) and 17beta-estradiol (E2) from water through the use of various adsorbents including granular activated carbon (GAC), chitin, chitosan, ion exchange resin and a carbonaceous adsorbent prepared from industrial waste. The results show that the kinetics of adsorption were adsorbent and compound-dependent, with equilibration being reached within 2 h for a waste-derived carbonaceous adsorbent to 71 h for an ion-exchange resin for E1, and within 7 h for the waste-derived carbonaceous adsorbent to 125 h for GAC for E2. Of all the adsorbents tested, the carbonaceous adsorbent showed the highest adsorption capacity, with a maximum adsorption constant of 87500 ml/g for E1 and 116000 ml/g for E2. The GAC also had a very high adsorption capacity for the two compounds, with a maximum adsorption constant of 9290 ml/g for E1 and 12200 ml/g for E2. The effects of some fundamental environmental parameters including adsorbent concentration, pH, salinity and the presence of humic acid and surfactant on adsorption were studied. The results show that adsorption capacity of activated carbon was decreased with an increase in adsorbent concentration and by the presence of surfactant and humic acid. The results have demonstrated excellent performance of a waste derived adsorbent in removing E1 and E2 from water, and indicated the potential of converting certain solid waste into useful adsorbents for pollution-control purposes.  相似文献   

11.
Urase T  Kikuta T 《Water research》2005,39(7):1289-1300
The removal of three estrogens such as 17beta-estradiol, two endocrine disruptors like bisphenol A, and 10 pharmaceutical substances like ibuprofen (IBP) by activated sludge was experimentally examined. The contribution of adsorption and degradation to the overall removal was estimated separately and successfully. At the neutral pH condition, the target pharmaceutical substances showed little tendency of adsorption to the sludge and their water-sludge partition coefficients were lower than those of the target estrogens. On the other hand, the increasing tendency of adsorption was observed in the lower pH condition. A linear relationship between the log of the partitioning coefficient and logK(ow) was observed when pH was lowered to keep the pharmaceuticals neutral solutes. The acidic operational condition was preferable for the removal of acidic pharmaceutical substances because the limiting stage for the removal was not biodegradation but the transfer of substances from the water phase to the sludge phase.  相似文献   

12.
A study was undertaken of the regeneration of three activated carbons exhausted with ortho-chlorophenol. The regeneration process was carried out using liquid water at 623 K and 150 atm in the absence of oxygen. The efficiency of this procedure was analyzed by determining the rate and amount of ortho-chlorophenol adsorbed in successive adsorption-regeneration cycles. The present procedure showed a much greater efficiency than that reported for chemical and/or thermal regeneration. Effects of this regeneration on the adsorption kinetics, adsorption capacity and textural characteristics of the carbon were investigated. The increase in adsorption capacity of the regenerated carbon compared with that of the original carbon seems mainly due to the opening of porosity during the regeneration treatment.  相似文献   

13.
Chemical filters are used extensively in the cleanrooms of the semiconductor factories to remove airborne molecular contamination (AMC). Adsorption by activated carbons (AC) as media within the chemical filter is one of the practical methods for removal of gaseous contamination in a cleanroom. The objective of this study is to evaluate coconut shell activated carbon adsorbent-loaded nonwoven fabric media performance by determining the breakthrough curves, the linear driving force (LDF), the intra-particle diffusion characteristics, the empty bed contact time (EBCT) and the bed depth service time (BDST), the mass-transfer zone (MTZ), and pressure drop. The testing conditions were maintained at 28 ± 1 °C, and relative humidity at 40 ± 2% with face velocities of 0.076, 0.114 and 0.152 m/s for removal efficiency and capacity determination. The challenge gas concentrations of toluene were fixed at 10, 31, 42 and 70 ppm to accelerate the breakthrough of media adsorption. The concentrations were measured by a real-time photoionization detector. Results showed that breakthrough curves correlate to the challenge vapor concentration and the face velocity. Saturated adsorption ratio was increased with raised challenge gas concentration and increased face velocity significantly.  相似文献   

14.
Liang CH  Chiang PC  Chang EE 《Water research》2007,41(15):3241-3250
This investigation developed a non-steady-state numerical model to differentiate the adsorption and biodegradation quantities of a biological activated carbon (BAC) column. The mechanisms considered in this model are adsorption, biodegradation, convection and diffusion. Simulations were performed to evaluate the effects of the major parameters, the packing media size and the superficial velocity, on the adsorption and biodegradation performances for the removal of dissolved organic carbon based on dimensionless analysis. The model predictions are in agreement with the experimental data by adjusting the liquid-film mass transfer coefficient (k(bf)), which has high correlation with the Stanton number. The Freundlich isotherm constant (N(F)), together with the maximum specific substrate utilization rate (k(f)) and the diffusion coefficient (D(f)), is the most sensitive variable affecting the performance of the BAC. Decreasing the particle size results in more substrate diffusing across the biofilm, and increases the ratio of adsorption rather than biodegradation.  相似文献   

15.
More stringent legislation on dissolved organic matter (DOM) urges the drinking water industry to improve in DOM removal, especially when applied to water with high dissolved organic carbon (DOC) contents and low turbidity. To improve conventional processes currently used in drinking water treatment plants (DWTPs), the performances of a hybrid membrane bioreactor containing fluidised activated carbon were investigated at the DWTP of Rennes. Preliminary results showed that the residual DOC was the major part of the non-biodegradable fraction. In order to increase the global efficiency, an upstream oxidation step was added to the process. Ozone was chosen to break large molecules and increase their biodegradability. The first step consisted of carrying out lab-scale experiments in order to optimise the necessary ozone dose by measuring the process yield, in terms of biodegradable dissolved organic carbon (BDOC). Secondly, activated carbon adsorption of the DOC present in ozonated water was quantified. The whole process was tested in a pilot unit under field conditions at the DWTP of Rennes (France). Lab-scale experiments confirmed that ozonation increases the BDOC fraction, reduces the aromaticity of the DOC and produces small size organic compounds. Adsorption tests led to the conclusion that activated carbon unexpectedly removes BDOC first. Finally, the pilot unit results revealed an additional BDOC removal (from 0.10 to 0.15 mg L−1) of dissolved organic carbon from the raw water considered.  相似文献   

16.
In this study, batch and column adsorption experiments with granular activated carbon (GAC) were carried out for removing dissolved organic matter (DOM) of a pond water at different water temperatures (5, 20, and 35 °C). The water was characterized before and after the adsorption step using UV/VIS spectroscopy and size-exclusion chromatography (SEC) combined with diode array detection (DAD). DOM breakthrough of GAC filters has been found to be slower at higher water temperatures, the DOM removal being most effective at 35 °C. UV/VIS spectra and SEC chromatograms of water samples treated at different water temperatures indicate that an increase in temperature especially supports the adsorption of small DOM molecules as well as molecules absorbing at higher wavelengths, specifying aromatic structures of DOM. SEC-DAD has been demonstrated to be an efficient method for characterizing DOM of natural waters and for detecting relative changes of DOM during the water treatment process.  相似文献   

17.
Chern JM  Chien YW 《Water research》2003,37(10):2347-2356
Three series of batch tests at 25 degrees C were performed to determine the benzoic acid and p-nitrophenol (PNP) binary adsorption isotherms onto GAC in the aqueous solutions and the experimental data were fitted to the extended Langmuir isotherm model successfully. The experimental data and the isotherm model parameters showed that the GAC used in this study had a higher affinity to PNP than benzoic acid. Three column tests were performed to determine the breakthrough curves and effluent solution pH with varying feed compositions. According to the experimental results, the weakly adsorbed BA exhibited an intermediate zone of effluent concentration higher than its feed one; the effluent solution pH could serve as a good indicator for breakthrough. The breakthrough curves with varying feed compositions could be predicted by the non-linear wave propagation theory satisfactorily. Only the adsorption isotherm models were required to construct the composition path diagram with which the breakthrough curves could be predicted.  相似文献   

18.
Nguyen KL  Lewis DM  Jolly M  Robinson J 《Water research》2004,38(19):4039-4044
The steps of the standard method to determine soluble aluminium concentration are filtering, followed by acidifying, then analysing with the atomic absorption spectrophotometer (AAS). When applied to alkaline humic water, acidification gives rise to the formation of humic acid as a brown particulate matter. Of the total soluble aluminium in the original water, 49-61% forms complexes with the particulate humic acid upon acidification. Although the AAS is capable of detecting the binding aluminium, the particulate nature of humic acid easily induces inaccurate readings as a result of the non-uniform distribution of the particulate matter. A more precise analysis of soluble aluminium concentration of alkaline humic water is shown to be achievable in basicified solutions instead. Basicified solutions keep humic acid in the soluble form; hence maintain the homogeneity of the sample.  相似文献   

19.
Ania CO  Béguin F 《Water research》2007,41(15):3372-3380
An electrochemical technique has been applied to enhance the removal of a common herbicide (bentazone) from aqueous solutions using an activated carbon cloth as electrode. A pH increase from acidic to basic reduces the uptake, with capacities going from 127 down to 80 mg/g at pH 2 and 7, respectively. Increasing the oxygen content of the carbon cloth causes a decrease in the bentazone loading capacity at all pH values. This indicates that adsorption is governed by both dispersive and electrostatic interactions, the extent of which is controlled by the solution pH and the nature of the adsorbent. Anodic polarization of the carbon cloth noticeably enhances the adsorption of bentazone, to an extent depending on the current applied to the carbon electrode. The electrosorption is promoted by a local pH decrease provoked by anodic decomposition of water in the pores of the carbon cloth.  相似文献   

20.
Quinlivan PA  Li L  Knappe DR 《Water research》2005,39(8):1663-1673
The overall objective of this research was to determine the effects of physical and chemical activated carbon characteristics on the simultaneous adsorption of trace organic contaminants and natural organic matter (NOM). A matrix of 12 activated carbon fibers (ACFs) with three activation levels and four surface chemistry levels (acid-washed, oxidized, hydrogen-treated, and ammonia-treated) was studied to systematically evaluate pore structure and surface chemistry phenomena. Also, three commercially available granular activated carbons (GACs) were tested. The relatively hydrophilic fuel additive methyl tertiary-butyl ether (MTBE) and the relatively hydrophobic solvent trichloroethene (TCE) served as micropollutant probes. A comparison of adsorption isotherm data collected in the presence and absence of NOM showed that percent reductions of single-solute TCE and MTBE adsorption capacities that resulted from the presence of co-adsorbing NOM were not strongly affected by the chemical characteristics of activated carbons. However, hydrophobic carbons were more effective adsorbents for both TCE and MTBE than hydrophilic carbons because enhanced water adsorption on the latter interfered with the adsorption of micropollutants from solutions containing NOM. With respect to pore structure, activated carbons should exhibit a large volume of micropores with widths that are about 1.5 times the kinetic diameter of the target adsorbate. Furthermore, an effective adsorbent should possess a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage/constriction as a result of NOM adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号