首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marti N  Ferrer J  Seco A  Bouzas A 《Water research》2008,42(18):4609-4618
The management of the sludge treatment line can be optimized to reduce uncontrolled phosphorus precipitation in the anaerobic digester and to enhance phosphorus recovery in WWTP. In this paper, four operational strategies, which are based on the handling of the prefermented primary sludge and the secondary sludge from an EBPR process, have been tested in a pilot plant. The separated or mixed sludge thickening, the use of a stirred contact tank and the elutriation of the thickened sludge are the main strategies studied. Both the reduction of phosphorus precipitation in the digester and the supernatant suitability for a struvite crystallization process were assessed in each configuration. The mixed sludge thickening combined with a high flowrate elutriation stream reduced the phosphorus precipitation in the digester by 46%, with respect to the separate sludge thickening configuration (common practice in WWTP). Moreover, in this configuration, 68% of the soluble phosphorus in the system is available for a possible phosphorus recovery process by crystallization (not studied in this work). However, a high Ca/P molar ratio was detected in the resultant supernatant which is pointed out as a problem for the efficiency of struvite crystallization.  相似文献   

2.
Potential phosphorus recovery by struvite formation   总被引:32,自引:0,他引:32  
Formation of struvite (MgNH4PO4 x 6H2O) at sewage treatment works can cause operational problems and decrease efficiency. Struvite has a commercial value and the controlled formation and recovery of it would be beneficial. A mass balance was conducted at full scale across the whole sewage treatment plant in order to identify a stream to conduct bench-scale struvite crystallisation studies. The most suitable stream was identified as the centrifuge liquors. The average flow of the liquor stream was 393 m3 d(-1) and the composition was as follows: 167 mg L(-1) phosphorus, 44 mg L(-1) magnesium, 615 mg L(-1) ammonium, 56 mg L(-1) calcium and 2580 mg L(-1) of alkalinity. The pH averaged at 7.6 and the stream had a predicted struvite precipitation potential of 140 mg L(-1). Struvite crystallisation occurred quickly during the trials, by raising the pH of the centrifuge liquors to 9.0 and dosing with magnesium. Up to 97% phosphorus removal as struvite was achieved. Struvite formation occurred when the molar ratio of magnesium:phosphorus was at least 1.05:1. Below this ratio phosphorus removals of 72% were observed, but not exclusively as struvite. Annual yields of struvite were calculated to be 42-100 tonnes a year, depending on the dose regime. Revenue from the sale of produced struvite could be between Pound Sterling8400 and Pound Sterling20,000 a year.  相似文献   

3.
An advanced sewage treatment process has been developed, in which excess sludge reduction by ozonation and phosphorus recovery by crystallization process are incorporated to a conventional anaerobic/oxic (A/O) phosphorus removal process. The mathematical model was developed to describe the mass balance principal at a steady state of this process. Sludge ozonation experiments were carried out to investigate solubilization characteristics of sludge and change in microbial activity by using sludge cultured with feed of synthetic sewage under A/O process. Phosphorus was solubilized by ozonation as well as organics, and acid-hydrolyzable phosphorus (AHP) was the most part of solubilized phosphorus for phosphorus accumulating organisms (PAOs) containing sludge. At solubilization of 30%, around 70% of sludge was inactivated by ozonation. The results based on these studies indicated that the proposed process configuration has potential to reduce the excess sludge production as well as to recover phosphorus in usable forms. The system performance results show that this system is practical, in which 30% of solubilization degree was achieved by ozonation. In this study, 30% of solubilization was achieved at 30 mgO(3)/gSS of ozone consumption.  相似文献   

4.
Low-cost struvite production using source-separated urine in Nepal   总被引:2,自引:0,他引:2  
This research investigated the possibility of transferring phosphorus from human urine into a concentrated form that can be used as fertilizer in agriculture. The community of Siddhipur in Nepal was chosen as a research site, because there is a strong presence and acceptance of the urine-diverting dry toilets needed to collect urine separately at the source. Furthermore, because the mainly agricultural country is landlocked and depends on expensive, imported fertilizers, the need for nutrient security is high. We found that struvite (MgNH4PO4·6H2O) precipitation from urine is an efficient and simple approach to produce a granulated phosphorus fertilizer. Bittern, a waste stream from salt production, is a practical magnesium source for struvite production, but it has to be imported from India. Calculations show that magnesium oxide produced from locally available magnesite would be a cheaper magnesium source. A reactor with an external filtration system was capable of removing over 90% of phosphorus with a low magnesium dosage (1.1 mol Mg mol P), with coarse nylon filters (pore width up to 160 ± 50 μm) and with only one hour total treatment time. A second reactor setup based on sedimentation only achieved 50% phosphate removal, even when flocculants were added. Given the current fertilizer prices, high volumes of urine must be processed, if struvite recovery should be financially sustainable. Therefore, it is important to optimize the process. Our calculations showed that collecting the struvite and calcium phosphate precipitated spontaneously due to urea hydrolysis could increase the overall phosphate recovery by at least 40%. The magnesium dosage can be optimized by estimating the phosphate concentration by measuring electrical conductivity. An important source of additional revenue could be the effluent of the struvite reactor. Further research should be aimed at finding methods and technologies to recover the nutrients from the effluent.  相似文献   

5.
Ying Jin  Zhiyou Wen 《Water research》2009,43(14):3493-3502
Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H2SO4, or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 °C and 25.3 min for methane production, and 135 °C and 26 min for orthophosphate release, respectively.  相似文献   

6.
A metallic system acting as a seed substrate has been designed and developed in order to assess its efficiency in recovering phosphorus as struvite. The device, consisting of two concentric stainless steel meshes, was immerged in the upper section of a pilot crystallisation reactor fed with synthetic liquors (MgCl2·6H2O, NH4H2PO4,) for 2 h. Apart from soluble PO4-P removals which remained in the range 79-80% with or without application of the metallic system, it was found that under the specific operating conditions tested the meshes were capable of accumulating struvite at a rate of 7.6 gm−2 h−1, hence reducing significantly the amount of fine particles remaining in solution from 302.2 to 12 mg L−1 when compared to trials without mesh.  相似文献   

7.
Aerobic granular sludge from a lab-scale reactor with simultaneous nitrification/denitrification and enhanced biological phosphorus removal processes exhibited significant amount of ammonium adsorption (1.5 mg NH4+-N/g TSS at an ammonium concentration of 30 mg N/L). Potassium release accompanied ammonium adsorption, indicating an ion exchange process. The existence of potassium magnesium phosphate (K-struvite) as one of potassium sources in the granular sludge was studied by X-ray diffraction analysis (XRD). Artificially prepared K-struvite was indeed shown to adsorb ammonium. Alginate-like exopolysaccharides were isolated and their inducement for struvite formation was investigated as well. Potassium magnesium phosphate proved to be a major factor for ammonium adsorption on the granular sludge. Struvites (potassium/ammonium magnesium phosphate) accumulate in aerobic granular sludge due to inducing of precipitation by alginate-like exopolysaccharides.  相似文献   

8.
The behavior of inorganic elements (including phosphorus, nitrogen, and metals) during sludge ozonation was investigated using batch tests and the effects of metals on sludge solubilization were elucidated. A decrease of ∼50% in the ratio of sludge solubilization was found to relate to a high iron content 80-120 mgFe/gSS than that of 4.7-7.4 mgFe/gSS. During sludge ozonation, the pH decreased from 7 to 5, which resulted in the dissolution of chemically precipitated metals and phosphorus. Based on experimental results and thermodynamic calculation, phosphate precipitated by iron and aluminum was more difficult to release while that by calcium released with decrease in pH. The release of barium, manganese, and chrome did not exceed 10% and was much lower than COD solubilization; however, that of nickel, copper, and zinc was similar to COD solubilization. The ratio of nitrogen solubilization was 1.2 times higher than that of COD solubilization (R2 = 0.85). Of the total nitrogen solubilized, 80% was organic nitrogen. Because of their high accumulation potential and negative effect on sludge solubilization, high levels of iron and aluminum in both sewage and sludge should be considered carefully for the application of the advanced sewage treatment process with sludge ozonation and phosphorus crystallization.  相似文献   

9.
The Johannesburg City Council has operated biological and chemical nutrient removal wastewater treatment plants for the past 15–16 years. With the advent of more sophisticated sludge handling techniques, problems have been experienced with the recycle of phosphorus-rich sludge processing liquors to the liquid phase. These problems are expected to increase in the future. This paper describes laboratory and pilot scale experiments to determine viable methods for phosphorus removal from sludge liquors and ways of obviating phosphorus release from phosphorus-rich activated sludges. The design of new full-scale plants being constructed to pretreat phosphorus-rich sludges prior to dewatering are also discussed. The paper also describes innovative process layouts for sludge treatment keeping in mind various options for final sludge disposal. Emphasis is placed on the pre-aeration and phosphate precipitation from anaerobically digested and raw primary sludges and techniques for the thickening and dewatering of primary and waste activated sludges to minimize phosphate release into the liquors so produced. The technique of sludge thickening on linear screens is described and the coupling of linear screens to belt presses to complete the dewatering operation.  相似文献   

10.
A whole-lake hypolimnetic Ca(OH)2 addition, that induced calcium carbonate precipitation, combined with deep water aeration has been applied to eutrophic Lake Luzin, Germany during 1996-1998. In this study we investigated the dynamic of phosphorus and its binding forms in seston and sediment before and during the treatment. The sedimentation rates of phosphorus increased within three years of induced calcite precipitation. The phosphorus binding forms shifted to the calcite-bound phosphorus in the settling matter. The increase of calcite-bound P in the settling material did not coincide with the maximum induced CaCO3-precipitation caused by the hypolimnetic addition of Ca(OH)2. An impact of chemicals additions and pH on phosphorus binding forms in seston and surface sediments has been studied in laboratory experiments with sediment core incubations and slurry experiments.Laboratory studies showed that the lowest phosphorus flux from sediment was related to the experiment with pH = 7 in overlaying water adjusted with Ca(OH)2. The adjusting of pH with Ca(OH)2 leads to a lower P flux of 2.3 mg P m−2 d−1, while the highest P-flux is attributed to the experiment with the pH which was adjusted with NaOH. Phosphorus fraction which reflects phosphorus binding on carbonates in surface sediments increased within one year of treatment, enhancing the phosphorus retention capacity of sediments.  相似文献   

11.
Nowadays, the recovery of phosphorus has been in the spotlight due to its importance for food security and depleting sources. In this study, phosphorus recovery from dried sewage sludge and sludge ash by acid and alkaline leaching was evaluated. Optimum extraction time and temperature were determined as two hours and ambient temperature. Results showed the superiority of strong acidic conditions for leaching; 75 ml/g with 0.4N HCl and 25 ml/g with 0.6N HCl were determined as optimum conditions to achieve efficient phosphorus dissolution from sludge ash (94.6%) and dried sludge (91.1%), respectively, with the lower heavy metal concentrations. Lower L/S ratio put forward the dried sludge as a more advantageous resource for phosphorus extraction. Besides, by alkaline leaching of sludge ash and dried sludge, 60.3 and 70.3% phosphorus dissolutions were achieved with 75 ml/g and 1N NaOH; and the leachate was a suitable product for phosphorus precipitation due to its high pH.  相似文献   

12.
磷资源不可替代又不能再生。现代工业攫取磷矿大多用于磷肥生产,通过作物收获的粮食、蔬菜以及饲养畜禽肉类进入人体,而随食物进入人体的大多数磷(90%)会随排泄物进入污水(无粪尿返田情况)。尽管最终进入污水中的磷占开采磷矿的比例很小(<5%),但这是人类除动物粪便与作物秸秆外唯一可能实现磷人工循环的位点,相对于转移进作物中的磷来说该比例超过1/4。因此,在废弃粪尿返田之原生态习惯的情况下,从污水处理过程中回收磷则显得非常重要。目前从污水处理过程中回收磷存在许多方式与产品,而与污泥焚烧灰分相关的磷回收程度最高,可达90%。为此,首先基于全球磷资源危机与我国磷流向及其估算,揭示磷回收的必要性和急迫性。然后,对与污泥焚烧相关的灰分磷回收技术以及潜在应用进行总结和分析。最后,根据肥效实验与成本估算,认定灰分再生磷肥比传统矿石磷肥具有潜在市场前景,特别是它的可持续意义。  相似文献   

13.
The results from this research suggest that both calcium phosphate precipitation and enhanced biological uptake play a role in phosphorus removal in the activated sludge process when a non-nitrifying, anaerobic-aerobic system is used to treat a low calcium wastewater. The primary removal mechanism was found to be biological uptake, as calcium phosphate precipitation accounted for only 15–27% of the total phosphorus removed. Calcium phosphate precipitation in the aerobic unit was enhanced because of the pH increase in that reactor. This was the result of low CO2 production (indicated by low specific oxygen uptake values) and intense aeration which caused excessive CO2 stripping in the aerobic unit  相似文献   

14.
Phosphorus recovery from sewage sludge will become increasingly important within the next decades due to depletion of mineral phosphorus resources. In this work a new process concept was investigated, which aims at realising phosphorus recovery in a synergistic way with the overall sewage sludge treatment scheme. This process combines a low pressure wet oxidation for sewage sludge decomposition as well as phosphorus dissolution and a nanofiltration process to separate phosphorus from heavy metals and obtain a clean diluted phosphoric acid, from which phosphorus can be recovered as clean fertiliser.It was shown that this process concept is feasible for sewage sludge for wastewater treatment plants that apply enhanced biological removal or precipitation with alumina salts for phosphorus removal. The critical parameter for phosphorus dissolution in the low pressure wet oxidation process is the iron concentration, while in the nanofiltration multi-valent cations play a predominant role.In total, a phosphorus recovery of 54% was obtained for an exemplary wastewater treatment plant. Costs of the entire process are in the same range as conventional sewage sludge disposal, with the benefit being phosphorus recovery and reduced emission of greenhouse gases due to avoidance of sludge incineration.  相似文献   

15.
Phosphorus removal using cow bone in hydroxyapatite crystallization   总被引:7,自引:0,他引:7  
Jang H  Kang SH 《Water research》2002,36(5):1324-1330
The applicability of cow bone as a seed material in hydroxyapatite crystallization was investigated in this research. Seed crystal used for the experiments was prepared by the calcination of cow bone. The effects of initial calcium concentration, pH, alkalinity, reaction temperature condition, and calcination temperature were examined for synthetic solution by batch experiment. The experimental results showed that a good phosphorus removal could be achieved by cow bone crystal seeding. The phosphorus removal rate with various calcium concentrations and pHs could be predicted from high relationships between residual phosphorus concentration and pH (after reaction). The effects of alkalinity, reaction temperature condition, and calcination temperature were also examined by rate constant analysis.  相似文献   

16.
Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89 ± 3% and 75 ± 8%, resulting in final effluent levels of 12 ± 3 mg PO43−-P L−1 and 11 ± 3 mg PO43−-P L−1, respectively. In contrast, poor phosphate removal (19 ± 8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca2+/PO43−-P molar ratio (ca. 1.25 ± 0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca2+ interference. A shift in the influent Ca2+/PO43−-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78 ± 7%, corresponding with effluent levels of 14 ± 4 mg Ptotal L−1 (9 ± 3 mg PO43−-P L−1). Under these conditions high quality spherical struvite crystals of 2-6 mm were produced.  相似文献   

17.
Decrey L  Udert KM  Tilley E  Pecson BM  Kohn T 《Water research》2011,45(16):4960-4972
Human urine has the potential to be a sustainable, locally and continuously available source of nutrients for agriculture. Phosphate can be efficiently recovered from human urine in the form of the mineral struvite (MgNH4PO4·6H2O). However, struvite formation may be coupled with the precipitation of other constituents present in urine including pathogens, pharmaceuticals, and heavy metals. To determine if struvite fertilizer presents a microbiological health risk to producers and end users, we characterized the fate of a human virus surrogate (phage ΦX174) and the eggs of the helminth Ascaris suum during a low-cost struvite recovery process. While the concentration of phages was similar in both the struvite and the urine, Ascaris eggs accumulated within the solid during the precipitation and filtration process. Subsequent air-drying of the struvite filter cake partially inactivated both microorganisms; however, viable Ascaris eggs and infective phages were still detected after several days of drying. The infectivity of both viruses and eggs was affected by the specific struvite drying conditions: higher inactivation generally occurred with increased air temperature and decreased relative humidity. On a log-log scale, phage inactivation increased linearly with decreasing moisture content of the struvite, while Ascaris inactivation occurred only after achieving a minimum moisture threshold. Sunlight exposure did not directly affect the infectivity of phages or Ascaris eggs in struvite cakes, though the resultant rise in temperature accelerated the drying of the struvite cake, which contributed to inactivation.  相似文献   

18.
A temperature-programmed graphite microfurnace apparatus with mechanical stirring is described for the thermal regeneration of powdered activated carbon (PAC) alone or PAC-biological sludge mixtures from the PAC enhancement of the activated sludge process. Three PACs with widely differing BET areas were evaluated to determine the effects of regeneration on their physical and chemical properties. PAC weight % recoveries were in the range of 60–80%, and the recovery of wastewater (filtered mixed liquor) adsorption capacity regularly exceeded 100% for all carbons. In one case, 222% recovery was achieved. Regeneration always reduced BET area but the effects on I2 number, pore size distribution and particle size were mixed.Compared to the regeneration of PAC alone, the presence of 40–50% biological sludge was clearly detrimental to the regeneration process. Nevertheless, essentially complete regeneration could be achieved with biomass present by adding a 20-min 400°C, N2-purge-gas charring step to the usual 20-min, 825°C, H2O-N2-CO2 purge-gas reactivation step. Unfortunately, charring the biomass produced a regenerated material containing 27–34% inerts including carbonaceous char and mineral ash. This black inert material was quite insoluble in dilute HCl and had no useful adsorption capacity. The controlled application of H2O or trace amounts of O2 during charring is suggested for the minimization of detrimental char but further research is needed.  相似文献   

19.
Juan Tong 《Water research》2009,43(12):2969-2976
In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH4-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH4-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH4-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH4-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH4-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW = 1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen removal was mainly attributed to the increase of influent SCFA, or rather, the increase of intracellular polyhydroxyalkanoates (PHA) which served as the carbon and energy sources for denitrification and phosphorus uptake. The addition of alkaline fermentation liquid to municipal wastewater, however, increased the effluent COD, which was caused mainly by the increase of influent humic acid, not protein or carbohydrate.  相似文献   

20.
Previous experiments have indicated a possibility of controlling the filamentous bulking of activated sludge by cultivating a mixed culture in a system with the plug flow pattern or in a system with a selector. These experiments, however, were conducted at approximately constant sludge load [0·3–0·4 kg BOD5(kg MLVSS day)−1] and sludge age (4·5–5·0 days) so that the results obtained had only a limited validity. Further experiments were, therefore, carried out in order to find if the previous findings hold also for activated sludge systems with high sludge loads and low sludge ages.The experiments were conducted on four activated sludge systems with different flow patterns: two of them as complete-mixing reactors and the other two as reactors with the plug flow pattern, having dispersion numbers of 0·08 and 0·07. A mixture of starch and peptone was used as the substrate. All systems were operated at sludge ages 2 and 3 days and at sludge loads from 0·5 to 2·3 kg BOD5(kg MLVSS day)−1.It was found that at sludge loads above 0·5 kg kg−1 day−1 mixed cultures developed in the systems with the plug flow pattern possessed high values of the SVI and contained high portions of filamentous microorganisms. This was found in spite of sufficiently high concentration gradients of the substrate along these systems. It means that plug flow and, consequently, the concentration gradient of the substrate along the activated sludge system may not be the only factor in controlling the selection of microorganisms in a mixed culture. An additional factor must exert an influence on the population dynamics and selection of microorganisms in mixed cultures at high sludge loads and low sludge ages.The experiments have confirmed findings of others that values of the SVI depend on the sludge load. However, different trends of dependence were observed in the systems with different flow patterns. While in the complete-mixing systems the SVI decreased with increasing sludge loading in the systems with the plug flow pattern it increased.A greater phosphorus demand was observed in plug flow systems than in those with complete mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号