首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Effects of substrate loading rate on biofilm structure   总被引:7,自引:0,他引:7  
Wijeyekoon S  Mino T  Satoh H  Matsuo T 《Water research》2004,38(10):2479-2488
The effects of substrate surface loading rate on biofilm growth and structure were investigated by chemical, biochemical and microscopic methods. Three tubular reactors were operated at equal C:N ratio of 0.1, with substrate loading rates of 1.2, 0.6 and 0.3g-C/m(2)/day. Substrate loading positively influenced the biofilm growth rate. Denser biofilms with lower porosities were formed at higher substrate loading. Slowly growing biofilms having porous structures were found to have higher specific activities. Nitrification was suppressed under the higher substrate loading conditions even at the equal C:N ratio of 0.1, thus proving that the spatial competition between nitrifiers and heterotrophs as one limiting criteria for stable nitrification. The spatial organization of the ammonia oxidizers was biofilm structure related. The strain variability of ammonia oxidizers was substrate loading dependent. These findings suggest that substrate loading is a key parameter in determining biofilm structure and function.  相似文献   

2.
Competition between heterotrophic bacteria oxidizing organic substrate and autotrophic nitrifying bacteria in a biofilm was evaluated. The biofilm was grown in a tubular reactor under different shear and organic substrate loading conditions. The reactor was initially operated without organic substrate in the influent until stable ammonia oxidation rates of 2.1 g N/(m2 d) were achieved. A rapid increase of fluid shear in the tubular reactor on day 156 resulted in biofilm sloughing, reducing the biofilm thickness from 330 to 190 μm. This sloughing event did not have a significant effect on ammonia oxidation rates. The addition of acetate to the influent of the reactor resulted in decreased ammonia oxidation rates (1.8 g N/(m2 d)) for low influent acetate concentrations (17 mg COD/L) and the breakdown of nitrification at high influent acetate concentrations (55 mg COD/L). Rapidly increasing fluid shear triggered biofilm sloughing in some cases—but maintaining constant shear did not prevent sloughing events from occurring. With the addition of acetate to the influent of the reactor, the biofilm thickness increased up to 1350 μm and individual sloughing events removed up to 50% of the biofilm. Biofilm sloughing had no significant influence on organic substrate removal or ammonia oxidation. During 325 days of reactor operation, ammonia was oxidized only to nitrite; no nitrate production was observed. This lack of nitrite oxidation was confirmed by fluorescent in situ hybridization (FISH) analysis, which detected betaproteobacterial ammonia oxidizers but not nitrite oxidizers. Mathematical modeling correctly predicted breakdown of nitrification at high influent acetate concentrations. Model predictions deviated systematically from experimental results, however, for the case of low influent acetate concentrations.  相似文献   

3.
We describe the transient-state, multiple-species biofilm model (TSMSBM), which is a novel synthesis of key modeling features needed to describe multiple-species biofilms that experience time-varying conditions, particularly including periodic detachment by backwashing. The TSMSBM includes six features that are essential for describing multiple-species biofilms that undergo changes over time: (1) four biomass types: heterotrophs, ammonia oxidizers, nitrite oxidizers, and inert biomass; (2) seven chemical species: input biodegradable organic material (BOM), NH4(+)-N, NO2(-)-N, NO3(-)-N, utilization-associated products, biomass-associated products, and dissolved oxygen; (3) eight reactions that describe the rates of consumption or production of the different species, as well as the stoichiometric linkages among the rates; (4) reaction with diffusion of all the soluble species in the biofilm; (5) growth, decay, detachment, and flux of each biomass type by location in the biofilm; and (6) constant or periodic detachment of biofilm, both of which allow for protection of biomass deep inside the biofilm. The last two features of the TSMSBM provide novel additions to biofilm modeling, and the synthesis of all features is a unique advancement. A series of examples illustrates insights that the TSMSBM can provide about the transient development of multiple-species biofilms; the roles of soluble microbial products and detachment in controlling the distribution of biomass types and process performance; and how backwashing affects the biofilm in drinking-water biofiltration.  相似文献   

4.
进水负荷对硝化菌与异养菌竞争关系的影响   总被引:11,自引:1,他引:11  
为优化反应器的脱氮设计,就水力负荷、温度对二级上向流曝气生物滤池内微生物种群结构的影响进行了研究。试验结果表明,在生物膜培养阶段,温度对氨氯氧化的影响要大于对COD降解的影响;较高的COD负荷会导致第一级反应器内的硝化点上移,第二级反应器的硝化速率固受第一级反应器出水残余有机物的影响而下降。在第二级反应器内氨氮的硝化速率明显加快,显示了单独驯化的硝化滤柱在氧化氨氮上的优势。在不同的进水COD负荷下,氨氧化菌与硝化菌的活性均有沿柱高逐渐增加的趋势,且当负荷较高时,不同高度处的氨氧化菌活性大多高于硝化菌的。异养菌的活性变化表明,生长较快的异养菌通常占据了反应器的进口区。  相似文献   

5.
A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O2, NH3) co-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (Ki) and maximum specific growth rate of ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were the determinant parameters in nitrogen conversion simulations. The modeling simulations demonstrated that Ki had stronger effects on nitrogen conversion at lower (0-10 m d−1) than at the higher values (>10 m d−1). The experimental results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO < 0.1 mg L−1) and high pH (8.0-8.3), nitrite accumulation was triggered more significantly in co-diffusion than counter-diffusion biofilms by increasing the applied ammonia loading from 0.21 to 0.78 g NH4+-N L−1 d−1. The co- and counter-diffusion biofilms displayed very different spatial structures and population distributions after 120 days of operation. AOB were dominant throughout the biofilm depth in co-diffusion biofilms, while the counter-diffusion biofilms presented a stratified structure with an abundance of AOB and NOB at the base and putative heterotrophs at the surface of the biofilm, respectively.  相似文献   

6.
Satoh H  Ono H  Rulin B  Kamo J  Okabe S  Fukushi K 《Water research》2004,38(6):1633-1641
A membrane aerated biofilm reactor (MABR), in which O(2) was supplied from the bottom of the biofilm and NH(4)(+) and organic carbon were supplied from the biofilm surface, was operated at different organic carbon loading rates and intra-membrane air pressures to investigate the occurrence of simultaneous chemical oxygen demand (COD) removal, nitrification and denitrification. The spatial distribution of nitrification and denitrification zones in the biofilms was measured with microelectrodes for O(2), NH(4)(+), NO(2)(-), NO(3)(-) and pH. When the MABR was operated at approximately 1.0 g-COD/m(2)/day of COD loading rate, simultaneous COD removal, nitrification and denitrification could be achieved. The COD loading rates and the intra-membrane air pressures applied in this study had no effect on the start-up and the maximum rates of NH(4)(+) oxidation in the MABRs. Microelectrode measurements showed that O(2) was supplied from the bottom of the MABR biofilm and penetrated the whole biofilm. Because the biofilm thickness increased during the operations, an anoxic layer developed in the upper parts of the mature biofilms while an oxic layer was restricted to the deeper parts of the biofilms. The development of the anoxic zones in the biofilms coincided with increase in the denitrification rates. Nitrification occurred in the zones from membrane surface to a point of ca. 60microm. Denitrification mainly occurred just above the nitrification zones. The COD loading rates and the intra-membrane air pressures applied in this study had no effect on location of the nitrification and denitrification zones.  相似文献   

7.
Chloramine has replaced free chorine for secondary disinfection at many water utilities because of disinfection by-product (DBP) regulations. Because chloramination provides a source of ammonia, there is a potential for nitrification when using chloramines. Nitrification in drinking water distribution systems is undesirable and may result in degradation of water quality and subsequent non-compliance with existing regulations. Thus, nitrification control is a major issue and likely to become increasingly important as chloramine use increases. In this study, monochloramine penetration and its effect on nitrifying biofilm activity, viability, and recovery was investigated and evaluated using microelectrodes and confocal laser scanning microscopy (CLSM). Monochloramine was applied to nitrifying biofilm for 24 h at two different chlorine to nitrogen (Cl2:N) mass ratios (4:1 [4.4 mg Cl2/L] or 1:1 Cl2:N [5.3 mg Cl2/L]), resulting in either a low (0.23 mg N/L) or high (4.2 mg N/L) free ammonia concentration. Subsequently, these biofilm samples were allowed to recover without monochloramine and receiving 4.2 mg N/L free ammonia. Under both monochloramine application conditions, monochloramine fully penetrated into the nitrifying biofilm within 24 h. Despite this complete monochloramine penetration, complete viability loss did not occur, and both biofilm samples subsequently recovered aerobic activity when fed only free ammonia. When monochloramine was applied with a low free ammonia concentration, dissolved oxygen (DO) fully penetrated, but with a high free ammonia concentration, complete cessation of aerobic activity (i.e., oxygen utilization) did not occur and subsequent analysis indicated that oxygen consumption still remained near the substratum. During the ammonia only recovery phase, different spatial recoveries were seen in each of the samples, based on oxygen utilization. It appears that the presence of higher free ammonia concentration allowed a larger biomass to remain active during monochloramine application, particularly the organisms deeper within the biofilm, leading to faster recovery in oxygen utilization when monochloramine was removed. These results suggest that limiting the free ammonia concentration during monochloramine application will slow the onset of nitrification episodes by maintaining the biofilm biomass at a state of lower activity.  相似文献   

8.
A mathematical model describing nitrification (nitritification plus nitratification) and anaerobic ammonium oxidation (ANAMMOX) combined in a biofilm reactor was developed. Based on this model, a previously proposed one-reactor completely autotrophic ammonium removal over nitrite (CANON) process was evaluated for its temperature dependency and behaviour under variable inflow. The temperature-dependency of growth rates of the involved organisms is described by an Arrhenius-type equation. If temperature decreases, the activities of the involved organisms decrease. This means that thicker biofilms are needed or the ammonium surface load (ASL) to the biofilm should be decreased to maintain full N-removal at lower temperatures. Although the growth rate of nitrite oxidisers is higher than that of ammonium oxidisers at lower temperatures, these organisms can be effectively competed out due to a lower oxygen affinity. Variable inflow or dissolved oxygen (DO) concentration negatively affect the N-removal efficiency due to an unbalance between applied ASL load and required oxygen concentration. A variation of the dissolved oxygen concentration in a small range (+/- 0.2g O2/m3) has no significant influence on the process performance, which means that requirements on electrode sensitivity and a DO control scheme are not too stringent. A variable ASL has obvious influence on the process performance, at both constant and variable DO. A good adjustment of DO in accordance with the variable ASL is needed to optimise the N-removal efficiency. At T = 20 degrees C, an N-removal efficiency of 88% is possible at ASL = 0.5 g NH4+ - N/mr2 d, in a biofilm of at least 0.7 mm thickness and a DO level of 0.3 g O2/m3 in the bulk liquid.  相似文献   

9.
A nitrifying membrane biofilm reactor (MBfR) was operated over 170 days, to assess the effect of ammonia loading rate under O2-excess conditions, and the effect of dissolved oxygen under O2-limiting conditions on nitrification efficiency. The MBfR was fed pure oxygen by diffusion through a non-porous membrane. Five different loading rates, ranging from 1.92 to 5.53 g N/m2 d, were tested, yielding specific nitrification rates (SNR) ranging from 1.54 to 2.60 g N/m2 d. SNR increased linearly with specific loading rate, up to the load of 3.5 g N/m2 d, which indicated that mass transfer was linearly related to the bulk ammonia concentration. Beyond that load, substrate diffusion limitation inhibited further increase of SNR. When operating the system under limited oxygen supply conditions, 100% oxygen utilization was achievable. Maintenance of higher oxygen supply allowed a slightly higher SNR due to the growth of nitrifiers at the outer side of the biofilm (away from the membrane surface). Nitrification batch tests confirmed that the fraction of nitrifiers in the solids detached from the surface of the biofilm (and washed out with the effluent), was twice as high during oxygen-excess conditions when compared to oxygen-limiting conditions.  相似文献   

10.
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process.  相似文献   

11.
Ruiz G  Jeison D  Chamy R 《Water research》2003,37(6):1371-1377
The objective of this paper was to determine the best conditions for partial nitrification with nitrite accumulation of simulated industrial wastewater with high ammonia concentration, lowering the total oxygen needed in the nitrification step, which may mean great saving in aeration. Dissolved oxygen (DO) concentration and pH were selected as operational parameters to study the possibility of nitrite accumulation not affecting overall ammonia removal. A 2.5L activated sludge reactor was operated in nitrification mode, feeding a synthetic wastewater simulating an industrial wastewater with high ammonia concentration. During the start-up a pH of 7.85 and a DO of 5.5mg/L were used. The reactor was operated until stable operation was achieved at final nitrogen loading rate (NLR) of 3.3kgN- NH(4)(+)/m(3)d with an influent ammonia concentration of 610mg N-NH(4)(+)/L.The influence of pH was studied in continuous operation in the range of 6.15-9.05, changing the reactor pH in steps until ammonia accumulation (complete nitrification inhibition) took place. The influence of DO was studied in the same mode, changing the DO in steps from 5.5 to 0.5mg/L.The pH was not a useful operational parameter in order to accumulate nitrite, because in the range of pH 6.45-8.95 complete nitrification to nitrate occurs. At pH lower than 6.45 and higher than 8.95 complete inhibition of nitrification takes place. Setting DO concentration in the reactor at 0.7mg/L, it was possible to accumulate more than 65% of the loaded ammonia nitrogen as nitrite with a 98% ammonia conversion. Below 0.5mg/L of DO ammonia was accumulated and over a DO of 1.7mg/L complete nitrification to nitrate was achieved.In conclusion, it is possible under the conditions of this study, to treat high ammonia synthetic wastewater achieving an accumulation of at least 65% of the loaded nitrogen as nitrite, operating at a DO around 0.7mg/L. This represents a reduction close to 20% in the oxygen necessary, and therefore a considerable saving in aeration.  相似文献   

12.
You SJ  Hsu CL  Chuang SH  Ouyang CF 《Water research》2003,37(10):2281-2290
This study makes a comparison between the nitrification performance of TNCU-I (a combined activated sludge-rotating biological contactor process) and A2O systems by the use of a pilot plant and batch experiments. The nitrifier abundance in both systems was determined, using cloning-denaturing gradient gel electrophoresis (DGGE) and fluorescent in-situ hybridization (FISH), to investigate the role of rotating biological contactor in the TNCU-I process. The stability of the nitrification performance and the specific nitrification rate were found to be greater in TNCU-I system than in the A2O system. RBC biofilm promoted nitrifying activity that contributed to the nitrification performance, especially at a low SRT. By using the cloning-DGGE method, the genera Nitrosospira and Nitrospira were found to be present in all the samples, while the genus Nitrosomonas was observed only in the TNCU-I RBC biofilm. In addition, the proportions of ammonia oxidizer in the TNCU-I RBC biofilm, the TNCU-I activated sludge and the A2O activated sludge were 11.4%, 13.2%, and 4.1%, respectively, higher than the nitrite oxidizer fractions of 3.3%, 5.7% and 2.1%, respectively, according to the cloning-DGGE method. On the other hand, the proportions of ammonia oxidizers in the afore-mention materials were 10.3%, 13.7%, and 5.2%, higher than the nitrite oxidizer fractions of 2.5%, 3.6% and 2.3%, according to the FISH experiments. This implies that the proportion of ammonia oxidizer in the TNCU-I process was 3.2 and 2.6 times that in the A2O process, determined by the cloning-DGGE and FISH methods, respectively. These amounts are also close to the ammonia oxidization rate of 2.9 times. All the data show that RBC added to the aerobic zone of TNCU-I process would increase the nitrifier abundance and enhance the nitrification performance of the system.  相似文献   

13.
Demonstration of mass transfer and pH effects in a nitrifying biofilm   总被引:7,自引:0,他引:7  
H. Siegrist  W. Gujer 《Water research》1987,21(12):1481-1487
A bench-scale nitrifying trickling filter (surface AREA = 0.5 m2) was developed to permit evaluation of diffusion of oxygen within a biofilm, the pH dependence of ammonium oxidation and external mass transfer. In addition, a biofilm model was developed and verified for homogeneous nitrifying biofilms of varied thickness and for thin nitrifying biofilms covered by heterotrophic biofilms. The model uses literature values for the pH dependence of Monod coefficients for Nitrosomonas and Nitrobacter.

The diffusion coefficient of oxygen in the biofilm was found to be 40–80% of the value in pure water. Due to mass transfer resistance, the biomass ·sees” a lower pH than is measured in the water film passing over it. The surface uptake rate of ammonia is used as an indicator of pH gradients within the biofilm system. With the help of oxygen limitation experiments, the location of nitrifying biomass within mixed biofilms (heterotrophic, autotrophic) can be determined.

The biofilm model predicts ammonium uptake rate of a trickling filter as a function of the bicarbonate concentration in the water film.  相似文献   


14.
Irene Jubany 《Water research》2009,43(11):2761-2772
Partial nitrification (ammonium oxidation to nitrite) has gained a lot of interest among researchers in the last years because of its advantages with respect to complete nitrification (ammonium oxidation to nitrate): decrease of oxygen requirements for nitrification, reduction of COD demand and CO2 emissions during denitrification and higher denitrification rate and lower biomass production during anoxic growth.In this study, an extremely high-strength ammonium wastewater (3000-4000 mg N L−1) was treated in a continuous pilot plant with a configuration of three reactors in series plus a settler. The system was operated under the maximum possible volumetric nitrogen loading rate, at mild temperature (around 25 °C), with high sludge retention time (around 30 d) and significant nitrifying biomass concentration (average of 1800 ± 600 mg VSS L−1). The implemented control loops transformed the system, which was operating with complete nitrification, into a continuous partial nitrification system. Nitrite oxidizing bacteria (NOB) washout was accomplished with local control loops for pH and dissolved oxygen (DO) with proper setpoints for NOB inhibition (pH = 8.3 and DO = 1.2-1.9 mg O2 L−1) and with an inflow control loop based on Oxygen Uptake Rate (OUR) measurements, which allowed working at the maximum ammonium oxidation capacity of the pilot plant in each moment. This operational strategy maximized the difference between ammonia oxidizing bacteria (AOB) and NOB growth rates, which is the key point to achieve a fast and stable NOB washout. The results showed a stable operation of the partial nitrification system during more than 100 days and NOB washout was corroborated with fluorescence in-situ hybridization (FISH) analysis.  相似文献   

15.
Aerobic methanotrophs can contribute to nitrate removal from contaminated waters, wastewaters, or landfill leachate by assimilatory reduction and by producing soluble organics that can be utilized by coexisting denitrifiers. The goal of this study was to investigate nitrate removal and biofilm characteristics in membrane biofilm reactors (MBfR) with various supply regimes of oxygen and methane gas. Three MBfR configurations were developed and they achieved significantly higher nitrate removal efficiencies in terms of methane utilization (values ranging from 0.25 to 0.36 mol N mol−1 CH4) than have previously been observed with suspended cultures. The biofilm characteristics were investigated in two MBfRs with varying modes of oxygen supply. The biofilms differed in structure, but both were dominated by Type I methanotrophs growing close to the membrane surface. Detection of the nitrite reductase genes, nirS and nirK, suggested genetic potential for denitrification was present in the mixed culture biofilms.  相似文献   

16.
A biofilm reactor, termed the permeable-support biofilm (PSB), was developed in which oxygen was supplied to the interior of the biofilm through a permeable membrane. The reactor was tested on filtered sewage supplemented with nutrient broth; the bulk solution was anoxic and the interior of the biofilm was supplied with pure oxygen. All tests were performed on a non-steady state biofilm with a depth of 1 mm. Mass balances on total organic carbon, ammonia, organic nitrogen and nitrate showed that combined heterotrophic oxidation of organics, denitrification and nitrification occurred simultaneously within the biofilm. The advantages of such a reactor are discussed.  相似文献   

17.
Wäsche S  Horn H  Hempel DC 《Water research》2002,36(19):4775-4784
In a long-term study on heterotrophic biofilms in tube reactors, this investigation focused on mass transfer at the bulk/biofilm interface, biofilm density and substrate conversion rates. Several biofilms were cultivated under different substrate and hydrodynamic conditions. Oxygen concentration profiles were measured with microelectrodes in the biofilm and in the boundary layer directly in the biofilm tube reactors. The thickness of the concentration boundary layer was found to depend on the surface structure of the biofilm. The hydrodynamic conditions and the substrate load during the growth phase of the biofilm in biofilm systems are two key parameters that influence the biofilm growth, particularly the structure, density and thickness. The measured substrate conversion rates, biofilm densities and the boundary layer thickness were used to formulate an equation for the mass transfer in biofilm tube reactors.  相似文献   

18.
厌氧氨氧化技术利用NO_=2^--N氧化NH_4^+-N,实现污水中氮素的高效去除,其中NO_=2^--N的产生是实现厌氧氨氧化应用的难点。短程硝化是获取NO_=2^--N的重要途径之一,但目前在实际工程中通过短程硝化难以实现长期稳定的亚硝酸盐积累。短程反硝化工艺将反硝化过程控制在硝酸盐还原的第一步来积累NO_=2^--N,可实现从反硝化途径获得NO_=2^--N为厌氧氨氧化反应提供底物,去除污水中的氮素污染物。简要介绍了短程反硝化工艺的发展背景、研究进展、启动及控制策略等,并对短程反硝化过程亚硝酸盐积累机制及其与厌氧氨氧化工艺耦合方式进行了总结,最后对其未来的研究方向进行了展望。  相似文献   

19.
The influence of chlorine on biofilm in low organic carbon environments typical of drinking water or industrial process water was examined by comparing biomass and kinetic parameters for biofilm growth in a chlorinated reactor to those in a non-chlorinated control. Mixed-population heterotrophic biofilms were developed in rotating annular reactors under low concentration, carbon-limited conditions (< 2 mg/L as carbon) using three substrate groups (amino acids, carbohydrates and humic substances). Reactors were operated in parallel under identical conditions with the exception that chlorine was added to one reactor at a dose sufficient to maintain a free chlorine residual of 0.09-0.15 mg/L in the effluent. The presence of free chlorine resulted in development of less biofilm biomass compared to the control for all substrates investigated. However, specific growth and organic carbon removal rates were on the average five times greater for chlorinated biofilm compared to the control. Observed yield values were less for chlorinated biofilm. Although chlorinated biofilm's specific organic carbon removal rate was high, the low observed yield indicated organic carbon was being utilized for purposes other than creating new cell biomass. The impacts of free chlorine on mixed-population biofilms in low-nutrient environments were different depending upon the available substrate. Biofilms grown using amino acids exhibited the least difference between control and chlorinated kinetic parameters; biofilm grown using carbohydrates had the greatest differences. These findings are particularly relevant to the fundamental kinetic parameters used in models of biofilm growth in piping systems that distribute chlorinated, low-carbon-concentration water.  相似文献   

20.
The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5 l tanks (Reactors 1 and 2), each with a biofilm module of 2 m2 surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (CODf) loading rate of 3.46 g/m2 per day, the removal efficiencies were 95% CODf, 87% TNf and 74% TPf. While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100–250 μm deep sub-surface zone and of PAOs in the 0–150 μm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest that when successful co-enrichment of AOB and PAOs occur in biofilm environments, such as in the PFBR system, they do so at different zone depths in the biofilm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号