首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Sandra Jansen 《Water research》2010,44(4):1288-120
A study was conducted to understand the role of cell concentration and metabolic state in the transport and deposition behaviour of Pseudomonas fluorescens with and without substrate addition. Column experiments using the short-pulse technique (pulse was equivalent to 0.028 pore volume) were performed in quartz sand operating under saturated conditions. For comparison, experiments with microspheres and inactive (killed) bacteria were also conducted. The effluent concentrations, the retained particle concentrations and the cell shape were determined by fluorescent microscopy. For the transport of metabolically-active P. fluorescens without substrate addition a bimodal breakthrough curve was observed, which could be explained by the different breakthrough behaviour of the rod-shaped and coccoidal cells of P. fluorescens. The 70:30 rod/coccoid ratio in the influent drastically changed during the transport and it was about 20:80 in the effluent and in the quartz sand packing. It was assumed that the active rod-shaped cells were subjected to shrinkage into coccoidal cells. The change from active rod-shaped cells to coccoidal cells could be explained by oxygen deficiency which occurs in column experiments under saturated conditions. Also the substrate addition led to two consecutive breakthrough peaks and to more bacteria being retained in the column. In general, the presence of substrate made the assumed stress effects more pronounced. In comparison to microspheres and inactive (killed) bacteria, the transport of metabolically-active bacteria with and without substrate addition is affected by differences in physiological state between rod-shaped and the formed stress-resistant coccoidal cells of P. fluorescens.  相似文献   

2.
Brown DG  Abramson A 《Water research》2006,40(8):1591-1598
The collision efficiency (alpha) distribution of a bacterial population was determined using multiple packed-bed columns of varying lengths and analyzing the bacteria clean-bed breakthrough concentrations using a distributed colloid filtration theory. This technique allows the alpha distribution to be determined independently from other effects that can cause non-exponential deposition, including detachment and blocking. It was found that multiple probability density functions (PDF's) could accurately replicate the experimental data. Regardless of which PDF was used, a distributed alpha resulted in significantly greater predicted field-scale transport than when using a single alpha. However, there were wide variations in the predicted field-scale transport between the different distributions, suggesting that lab-scale experiments may not be readily utilized to determine the specific PDF that best represents alpha at the field scale. Finally, blocking was observed in the column effluent curves, underscoring the fact that if non-clean-bed processes occur then an approach such as that utilized in the current study may be used to separate the non-clean-bed and clean-bed processes when determining the collision efficiency distribution.  相似文献   

3.
Abramson A  Brown DG 《Water research》2007,41(19):4435-4445
The effects of solution ionic strength on the collision efficiency (alpha) distribution of a Sphingomonas sp. were investigated using multiple sand columns of varying lengths and analyzing the bacteria clean-bed breakthrough concentrations using a distributed colloid filtration theory (D-CFT). Five different probability density functions (PDFs) were investigated and all accurately replicated the lab-scale experimental data, whereas a single alpha value could not. The alpha distribution shifted toward smaller values with decreasing ionic strength and the PDF parameters were strongly correlated to the Debye length, indicating that electrostatic interactions had a direct impact on the alpha distribution. The results indicate that while ionic strength has a large impact on bacterial transport distances for a concentration reduction of a few orders of magnitude, as occurs at the laboratory scale, due to the distributed nature of the collision efficiency, it has a minor effect on predicted transport distances required to achieve concentration reductions on the order of 10(6), which occurs at the field scale. Because of this, bacterial inactivation (e.g., death), rather than physically removing the bacteria from solution via filtration, is likely the key process impacting the transport of viable bacteria at the field scale. Overall, for systems with a distributed alpha, the results indicate that ionic strength has a strong influence on the transport of bacteria at the lab-scale (centimeters to one meter), both ionic strength and bacterial inactivation are important at the meso-scale (tens of meters), and inactivation becomes the dominant mechanism for reducing the transport of viable bacteria at the field scale (hundreds of meters).  相似文献   

4.
Jones EH  Su C 《Water research》2012,46(7):2445-2456
Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic strength, the presence of natural organic matter (humic and fulvic acids) and an organic buffer (Trizma). At neutral pHs, Cu0 nanoparticles were positively charged and essentially immobile in porous media. The presence of natural organic matter, trizma buffer, and high pH decreased the attachment efficiency facilitating elemental copper transport through sand columns. Experimental results suggested the presence of both favourable and unfavourable nanoparticle interactions causes significant deviation from classical colloid filtration theory.  相似文献   

5.
In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-μm microspheres, almost all (>99%) predictably would be recovered within ∼4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was observed for the red, metal-oxide rich soil from Oahu. In contrast, colloidal attachment in the organic-rich, volcanic ash soil was relatively insensitive to changes in pH in spite of the high iron content. Given the fundamental differences in transport behavior of oocyst-sized colloids within the two volcanic soils of similar origin, agricultural practices modified to lessen C. parvum contamination of ground or surface water would necessitate taking the individual soil properties into account.  相似文献   

6.
The coupled role of solution ionic strength (IS), hydrodynamic force, and pore structure on the transport and retention of viable Cryptosporidium parvum oocyst was investigated via batch, packed-bed column, and micromodel systems. The experiments were conducted over a wide range of IS (0.1-100 mM), at two Darcy velocities (0.2 and 0.5 cm/min), and in two sands (median diameters of 275 and 710 μm). Overall, the results suggested that oocyst retention was a complex process that was very sensitive to the solution IS, the Darcy velocity, and the grain size. Increasing IS led to enhanced retention of oocysts in the column, which is qualitatively consistent with predictions of Derjaguin-Landau-Verwey-Overbeek theory. Conversely, increasing velocity and grain size resulted in less retention of oocysts in the column due to the difference in the fluid drag force and the rates of mass transfer from the liquid to the solid phase and from high to low velocity regions. Oocyst retention was controlled by a combined role of low velocity regions, weak attractive interactions, and/or steric repulsion. The contribution of each mechanism highly depended on the solution IS. In particular, micromodel observations indicated that enhanced oocyst retention occurred in low velocity regions near grain-grain contacts under highly unfavorable conditions (IS = 0.1 mM). Oocyst retention was also found to be influenced by weak attractive interactions (induced by the secondary energy minimum, surface roughness, and/or nanoscale chemical heterogeneity) when the IS = 1 mM. Reversible retention of oocysts to the sand in batch and column studies under favorable attachment conditions (IS = 100 mM) was attributed to steric repulsion between the oocysts and the sand surface due to the presence of oocyst surface macromolecules. Comparison of experimental observations and theoretical predictions from classic filtration theory further supported the presence of this weak interaction due to steric repulsion.  相似文献   

7.
The role of extracellular macromolecules on Escherichia coli O157:H7 transport and retention was investigated in saturated porous media. To compare the relative transport and retention of E. coli cells that are macromolecule rich and deficient, macromolecules were partially cleaved using a proteolytic enzyme. Characterization of bacterial cell surfaces, cell aggregation, and experiments in a packed sand column were conducted over a range of ionic strength (IS). The results showed that macromolecule-related interactions contribute to retention of E. coli O157:H7 and are strongly linked to solution IS. Under low IS conditions (IS ≤ 0.1 mM), partial removal of the macromolecules resulted in a more negative electrophoretic mobility of cells and created more unfavorable conditions for cell-quartz and cell-cell interactions as suggested by Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy profiles and cell aggregation kinetics. Consequently, less retention was observed for enzyme treated cells in the corresponding column experiments. In addition, a time-dependent deposition process (i.e., ripening) was observed for untreated cells, but not for treated cells, supporting the fact that the macromolecules enhanced cell-cell interactions. Additional column experiments for untreated cells under favorable conditions (IS ≥ 1 mM) showed that a significant amount of the cells were reversibly retained in the column, which contradicts predictions of DLVO theory. Furthermore, a non-monotonic cell retention profile was observed under favorable attachment conditions. These observations indicated that the presence of macromolecules hindered irreversible interactions between the cells and the quartz surface.  相似文献   

8.
The novel lanthanum-modified clay water treatment technology (Phoslock®) seems very promising in remediation of eutrophied waters. Phoslock® is highly efficient in stripping dissolved phosphorous from the water column and in intercepting phosphorous released from the sediments. The active phosphorous-sorbent in Phoslock® is the Rare Earth Element lanthanum. A leachate experiment revealed that lanthanum could be released from the clay, but only in minute quantities of 0.13-2.13 μg l−1 for a worst-case Phoslock® dosage of 250 mg l−1. A life-history experiment with the zooplankton grazer Daphnia magna revealed that lanthanum, up to the 1000 μg l−1 tested, had no toxic effect on the animals, but only in medium without phosphorous. In the presence of phosphorous, rhabdophane (LaPO4 · nH2O) formation resulted in significant precipitation of the food algae and consequently affected life-history traits. With increasing amounts of lanthanum, in the presence of phosphate, animals remained smaller, matured later, and reproduced less, resulting in lower population growth rates. Growth rates were not affected at 33 μg La l−1, but were 6% and 7% lower at 100 and 330 μg l−1, respectively, and 20% lower at 1000 μg l−1. A juvenile growth assay with Phoslock® tested in the range 0-5000 mg l−1, yielded EC50 (NOEC) values of 871 (100) and 1557 (500) mg Phoslock® l−1 for weight and length based growth rates, respectively. The results of this study show that no major detrimental effects on Daphnia are to be expected from Phoslock® or its active ingredient lanthanum when applied in eutrophication control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号