首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confined animal feeding operations (CAFOs) often use anaerobic lagoons for manure treatment. In the USA, swine CAFO lagoon water is used for crop irrigation that is regulated by farm-specific nutrient management plans (NMPs). Implementation of stricter US environmental regulations in 2013 will set soil P limits; impacting land applications of manure and requiring revision of NMPs. Precise knowledge of lagoon water quality is needed for formulating NMPs, for understanding losses of N and C in ammonia and greenhouse gas emissions, and for understanding risks of environmental contamination by fecal bacteria, including zoonotic pathogens. In this study we determined year-round levels of nutrients and bacteria from swine CAFO lagoon water. Statistical analysis of data for pH, electrical conductivity (EC), inorganic and organic C, total N, water-soluble and total minerals (Ca, Cu, Fe, K, Mg, Mn, P, and Zn) and bacteria (Escherichia coli, enterococci, Clostridium perfringens, Campylobacter spp., Listeria spp., Salmonella spp., and staphylococci) showed that all differed significantly by dates of collection. During the irrigation season, levels of total N decreased by half and the N:P ratio changed from 9.7 to 2.8. Some seasonal differences were correlated with temperature. Total N and inorganic C increased below 19 °C, and decreased above 19 °C, consistent with summer increases in ammonia and greenhouse gas emissions. Water-soluble Cu, Fe, and Zn increased with higher summer temperatures while enterococci and zoonotic pathogens (Campylobacter, Listeria, and Salmonella) decreased. Although their populations changed seasonally, the zoonotic pathogens were present year-round. Increasing levels of E. coli were statistically correlated with increasing pH. Differences between depths were also found. Organic C, total nutrients (C, Ca, Cu, Fe, Mg, Mn, N, P, and Zn) and C. perfringens were higher in deeper samples, indicating stratification of these parameters. No statistical interactions were found between collection dates and depths.  相似文献   

2.
This work aimed to understand the distribution of five bacterial pathogens in O’ahu coastal streams and relate their presence to microbial indicator concentrations, land cover of the surrounding watersheds, and physical-chemical measures of stream water quality. Twenty-two streams were sampled four times (in December and March, before sunrise and at high noon) to capture seasonal and time of day variation. Salmonella, Campylobacter, Staphylococcus aureus, Vibrio vulnificus, and V. parahaemolyticus were widespread —12 of 22 O’ahu streams had all five pathogens. All stream waters also had detectable concentrations of four fecal indicators and total vibrio with log mean ± standard deviation densities of 2.2 ± 0.8 enterococci, 2.7 ± 0.7 Escherichia coli, 1.1 ± 0.7 Clostridium perfringens, 1.2 ± 0.8 F+ coliphages, and 3.6 ± 0.7 total vibrio per 100 ml. Bivariate associations between pathogens and indicators showed enterococci positively associated with the greatest number of bacterial pathogens. Higher concentrations of enterococci and higher incidence of Campylobacter were found in stream waters collected before sunrise, suggesting these organisms are sensitive to sunlight. Multivariate regression models of microbes as a function of land cover and physical-chemical water quality showed positive associations between Salmonella and agricultural and forested land covers, and between S. aureus and urban and agricultural land covers; these results suggested that sources specific to those land covers may contribute these pathogens to streams. Further, significant associations between some microbial targets and physical-chemical stream water quality (i.e., temperature, nutrients, turbidity) suggested that organism persistence may be affected by stream characteristics. Results implicate streams as a source of pathogens to coastal waters. Future work is recommended to determine infectious risks of recreational waterborne illness related to O’ahu stream exposures and to mitigate these risks through control of land-based runoff sources.  相似文献   

3.
Incidences of Staphylococcus aureus and methicillin resistant S. aureus (MRSA) have risen worldwide prompting a need to better understand routes of human exposure and whether standard bacterial water quality monitoring practices adequately account for this potential threat. Beach water and sand samples were analyzed during summer months for S. aureus, enterococci, and MRSA at three southern California beaches (Avalon, Doheny, Malibu Surfrider). S. aureus frequently was detected in samples of seawater (59%, n = 328) and beach sand (53%, n = 358). MRSA sometimes was detected in seawater (1.6%, n = 366) and sand (2.7%, n = 366) at relatively low concentrations. Site specific differences were observed, with Avalon Beach presenting the highest concentrations of S. aureus and Malibu Surfrider the lowest in both seawater and sand. S. aureus concentrations in seawater and sand were correlated to each other and to a variety of other parameters. Multiple linear regression on the combined beach data indicated that significant explanatory variables for S. aureus in seawater were S. aureus in sand, water temperature, enterococci in seawater, and the number of swimmers. In sand, S. aureus concentrations were related to S. aureus in seawater, water temperature, enterococci in seawater, and inversely to surf height classification. Only the correlation to water temperature held for individually analyzed beaches and for S. aureus concentrations in both seawater and sand. To provide context for these results, the prevalence of S. aureus in sand was compared to published fomite studies, and results suggested that beach prevalence was similar to that in homes.  相似文献   

4.
This study is focused on the diversity of bacterial communities from two series of horizontal subsurface flow constructed wetlands (CW) polishing high salinity tannery wastewater. Each series was planted with Arundo donax or Sarcocornia sp. in a substrate composed by expanded clay and sand. Chemical and biochemical oxygen demand removal efficiencies were similar in each series, varying between 58 and 67% (inlet COD 218 ± 28 mg L−1) and 60 and 77% (inlet BOD5 37 ± 6 mg L−1), respectively. High numbers of culturable bacteria were obtained from substrate and root samples - 5.75 × 106-3.95 × 108 CFU g−1 recovered on marine agar and 1.72 × 107-8.46 × 108 CFU g−1 on nutrient agar. Fifty bacterial isolates were retrieved from the CW, related phylogenetically to Firmicutes, Actinobacteria, Bacteroidetes, α-, β-, and γ-Proteobacteria. Changes in the bacterial communities, from roots and substrate of each series, related to the plant species, hydraulic loading rates and along CW operation were examined using denaturating gradient gel electrophoresis (DGGE). The clustering analysis suggested that a diverse and distinct bacterial community inhabits each series, which was related to the type of plant present in each CW.  相似文献   

5.
Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼27 mm (62 percentile). During higher water temperatures (>∼14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region.  相似文献   

6.
In the Mediterranean Sea, blooms of Ostreopsis cf. ovata and Ostreopsis siamensis have become increasingly frequent in the last decade and O. cf. ovata was found to produce palytoxin-like compounds (putative palytoxin, ovatoxin-a, -b, -c, -d and -e), a class of highly potent toxins. The environmental conditions seem to play a key role in influencing the abundance of Ostreopsis spp. High cell densities are generally recorded in concomitance with relatively high temperature and salinity and low hydrodynamics conditions. In this study the effects of temperature and salinity on the growth and toxicity of an Adriatic O. cf. ovata isolate were investigated. The highest growth rates of the Adriatic strain were recorded for cultures grown at 20 °C and at salinity values of 36 and 40, in accordance with natural bloom surveys. Toxicity was affected by growth conditions, with the highest toxin content on a per cell basis being measured at 25 °C and salinity 32.However, the highest total toxin content on a per litre basis was recorded at 20 °C and salinity 36, since under such conditions the growth yield was the highest.O. cf. ovata had lethal effects on Artemia nauplii and juvenile sea basses, and produced haemolysis of sheep erythrocytes. A comparison between haemolysis neutralization assay and HR LC-MS results showed a good correlation between haemolytic effect and total toxin content measured through HR LC-MS. Considering the increasing need for rapid and sensitive methods to detect palytoxin in natural samples, the haemolytic assay appears a useful method for preliminary quantification of the whole of palytoxin-like compounds in algal extracts.  相似文献   

7.
In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent.In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10−9 mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10−11-2.04 × 10−10 and 8.04 × 10−11-4.39 × 10−10 (mg phenol/CFU/h), respectively.In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μmax = 1.15/h, Ks = 35.4 mg/L and Ki = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes.Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass.Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed.  相似文献   

8.
Dissolved air flotation (DAF) performance with two different naturally occurring cyanobacterial morphologies was investigated with respect to the biomass removal efficiency, the toxin release to water and the coagulant demand by different water background natural organic matter (NOM). Coagulation (C)/Flocculation (F)/DAF bench-scale experiments (2 min coagulation at 380 s−1 with polyaluminium chloride (0.5-4 mg/L Al2O3, the dose depending on the water NOM content); 8 min flocculation at 70 s−1; 8 min DAF with 5 bar relative pressure and 8% pressurised recycle) were performed with single cells of Microcystis aeruginosa and Planktothrix rubescens filaments spiked in synthetic waters with different NOM contents (hydrophobic vs. hydrophilic NOM; moderate (2-3 mgC/L) vs. moderate-high concentration (ca. 6 mgC/L)). For both morphologies, the results show no apparent cyanobacterial damage (since the water quality did not degrade in dissolved microcystins and the removal of intracellular microcystins matched the removal of chlorophyll a) and high biomass removal efficiencies (93-99% for cells and 92-98% for filaments) provided optimal coagulant dose for chlorophyll a removal was ensured. Charge neutralisation by the polyaluminium chloride was the main coagulation mechanism of the M. aeruginosa cells and most likely also of the P. rubescens filaments. The specific coagulant demand was severely affected by NOM hydrophobicity, hydrophobic NOM (with a specific UV254nm absorbance, SUVA, above 4 L/(m mgC)) requiring ca. the triple of hydrophilic NOM (SUVA below 3 L/(m mgC)), i.e. 0.7 vs. 0.2-0.3 mg Al2O3/mg DOC.  相似文献   

9.
We have developed a rapid and robust technological solution including a membrane filtration and dissolution method followed by a molecular enrichment and a real-time PCR assay, for detecting the presence of Enterococcus sp. or Enterococcus faecalis/faecium per 100 mL of water in less than 5 h and we compared it to Method 1600 on mEI agar in terms of specificity, sensitivity, and limit of detection. The mEI and the Enterococcus sp.-specific assay detected respectively 73 (64.0%) and 114 (100%) of the 114 enterococcal strains tested. None of the 150 non-enterococcal strains tested was detected by both methods with the exception of Tetragenococcus solitarius for the Enterococcus sp. assay. The multiplexed E. faecalis/faecium assay efficiently amplified DNA from 47 of 47 (100%) E. faecalis and 27 of 27 (100%) E. faecium strains tested respectively, whereas none of the 191 non-E. faecalis/faecium strains tested was detected. By simultaneously detecting the predominant fecal enterococcal species, the E. faecalis/faecium-specific assay allows a better distinction between enterococcal strains of fecal origin and those provided by the environment than Method 1600. Our procedure allows the detection of 4.5 enterococcal colony forming units (CFU) per 100 mL in less than 5 h, whereas the mEI method detected 2.3 CFU/100 mL in 24 h (95% confidence). Thus, our innovative and highly effective method provides a rapid and easy approach to concentrate very low numbers of enterococcal cells present in a 100 mL water sample and allows a better distinction between fecal and environmental enterococcal cells than Method 1600.  相似文献   

10.
The presence of pathogenic free-living amoebae (FLA) such as Naegleria fowleri in freshwater environments is a potential public health risk. Although its occurrence in various water sources has been well reported, its presence and associated factors in biofilm remain unknown. In this study, the density of N. fowleri in biofilms spontaneously growing on glass slides fed by raw freshwater were followed at 32 °C and 42 °C for 45 days. The biofilms were collected with their substrata and characterized for their structure, numbered for their bacterial density, thermophilic free-living amoebae, and pathogenic N. fowleri. The cell density of N. fowleri within the biofilms was significantly affected both by the temperature and the nutrient level (bacteria/amoeba ratio). At 32 °C, the density remained constantly low (1-10 N. fowleri/cm2) indicating that the amoebae were in a survival state, whereas at 42 °C the density reached 30-900 N. fowleri/cm2 indicating an active growth phase. The nutrient level, as well, strongly affected the apparent specific growth rate (μ) of N. fowleri in the range of 0.03-0.23 h−1. At 42 °C a hyperbolic relationship was found between μ and the bacteria/amoeba ratio. A ratio of 106 to 107 bacteria/amoeba was needed to approach the apparent μmax value (0.23 h−1). Data analysis also showed that a threshold for the nutrient level of close to 104 bacteria/amoeba is needed to detect the growth of N. fowleri in freshwater biofilm. This study emphasizes the important role of the temperature and bacteria as prey to promote not only the growth of N. fowleri, but also its survival.  相似文献   

11.
We tested the hypothesis that zebra mussels (Dreissena polymorpha) have positive effects on the toxin-producing cyanobacterium, Microcystis aeruginosa, at low phosphorus (P) concentrations, but negative effects on M. aeruginosa at high P, with a large-scale enclosure experiment in an oligotrophic lake. After three weeks, mussels had a significantly positive effect on M. aeruginosa at ambient P (total phosphorus, TP ∼10 μg L−1), and a significantly negative effect at high P (simulating a TP of ∼40 μg L−1 in lakes). Positive and negative effects were strong and very similar in magnitude. Thus, we were able to ameliorate a negative effect of Dreissena invasion on water quality (i.e., promotion of Microcystis) by adding P to water from an oligotrophic lake. Our results are congruent with many field observations of Microcystis response to Dreissena invasion across ecosystems of varying P availability.  相似文献   

12.
The combined processes of biological AsIII oxidation and removal of AsIII and AsV by zero-valent iron were investigated with synthetic water containing high AsIII concentration (10 mg L−1). Two up-flow fixed-bed reactors (R1 and R2) were filled with 2 L of sieved sand (d = 3 ± 1 mm) while zero-valent iron powder (d = 76 μm; 1% (w/w) of sand) was mixed evenly with sand in R2. Thiomonas arsenivorans was inoculated in the two reactors. The pilot unit was studied for 33 days, with HRT of 4 and 1 h. The maximal AsIII oxidation rate was 8.36 mg h−1 L−1 in R1 and about 45% of total As was removed in R2 for an HRT of 1 h. A first order model fitted well with the AsIII concentration evolution at the different levels in R1. At the end of the pilot monitoring, batch tests were conducted with support collected at different levels in R1. They showed that bacterial AsIII oxidation rate was correlated with the axial length of reactor, which could be explained by biomass distribution in reactor or by bacterial activity. In opposition, AsIII oxidation rate was not stable in R2 due to the simultaneous bacterial AsIII oxidation and chemical removal by zero-valent iron and its oxidant products. However, a durable removal of total As was realized and zero-valent iron was not saturated by As over 33 days in R2. Furthermore, the influence of zero-valent iron and its oxidant corrosion products on the evolution of AsIII-oxidizing bacteria diversity was highlighted by the molecular fingerprinting method of PCR-DGGE using aoxB gene as a functional marker of aerobic AsIII oxidizers.  相似文献   

13.
Fecal indicator microbes, such as enterococci, are often used to assess potential health risks caused by pathogens at recreational beaches. Microbe levels often vary based on collection time and sampling location. The primary goal of this study was to assess how spatial and temporal variations in sample collection, which are driven by environmental parameters, impact enterococci measurements and beach management decisions. A secondary goal was to assess whether enterococci levels can be predictive of the presence of Staphylococcus aureus, a skin pathogen. Over a ten-day period, hydrometeorologic data, hydrodynamic data, bather densities, enterococci levels, and S. aureus levels including methicillin-resistant S. aureus (MRSA) were measured in both water and sand. Samples were collected hourly for both water and sediment at knee-depth, and every 6 h for water at waist-depth, supratidal sand, intertidal sand, and waterline sand. Results showed that solar radiation, tides, and rainfall events were major environmental factors that impacted enterococci levels. S. aureus levels were associated with bathing load, but did not correlate with enterococci levels or any other measured parameters. The results imply that frequencies of advisories depend heavily upon sample collection policies due to spatial and temporal variation of enterococci levels in response to environmental parameters. Thus, sampling at different times of the day and at different depths can significantly impact beach management decisions. Additionally, the lack of correlation between S. aureus and enterococci suggests that use of fecal indicators may not accurately assess risk for some pathogens.  相似文献   

14.
Liu Z  Cui F  Ma H  Fan Z  Zhao Z  Hou Z  Liu D 《Water research》2012,46(7):2290-2298
The bio-reaction of nitrobenzene (NB) with Microcystis aeruginosa was investigated at different initial algal densities and NB concentrations by performing static experiments. The results showed that the elimination of NB was enhanced by the bio-reaction, and the reaction rate varied as a function of the reaction time. Moreover, the reaction rate was significantly affected by the algal density and NB concentration. A kinetic analysis showed that the elimination of NB in a solution without algae appeared to be pseudo-first-order with respect to the NB concentration, whereas a first-order model was too oversimplified to describe the elimination of NB in a solution with algae. Assuming that different algal cells have the same effect on the bio-reaction under the same conditions, the bio-reaction can be described as dCNB = −k0CAmANBndt (where k0 is the reaction rate constant, CA is the algae density and CNB is the concentration of NB). When the growth of algae was not considered, the value of k0, m and n were 8.170 × 10−4, 0.5887 and 1.692, respectively. Alternatively, when algae were in the exponential growth phase, the value of k0, m and n were 1.6871 × 10−5, 0.7248 and 2.5407, respectively, according to a nonlinear fitting analysis. The kinetic model was also used to elucidate the effect of nutritional limitation on the bio-reaction.  相似文献   

15.
Cui X  Talley JW  Liu G  Larson SL 《Water research》2011,45(11):3300-3308
The role of primary sludge particulates (PSPs) in ultrasonic disinfection of Escherichia coli (E. coli) was investigated. Entrapment of E. coli by PSP was directly observed through scanning electron microscope (SEM) after E. coli and PSP were incubated together in water for 24 h at 35 °C. Entrapment coefficient was proposed for the first time to reflect the ability of PSP to entrap E. coli and was estimated as 1.4 × 103 CFU/mg PSP under our experimental conditions. Ultrasonication (20 kHz) of different E. coli-PSPs solutions showed that the entrapped E. coli cells were protected by PSP from ultrasonication and the unentrapped cells were not. However, the protection of entrapped E. coli cells gradually decreased as ultrasonication proceeded, suggesting the ability of power ultrasonication to deprotect the entrapped E. coli cells. SEM studies suggested a two-step mechanism for ultrasonic (20 kHz) disinfection of entrapped E. coli: breakdown of the protective PSP refugia and disinfection of the exposed E. coli cells. This research will enable more informed decisions about disinfection of aqueous samples where porous PSP are present.  相似文献   

16.
Fecal indicators such as Escherichia coli and enterococci are used as regulatory tools to monitor water with 24 h cultivation techniques for possible input of sewage or feces and presence of potential enteric pathogens yet their source (human or animal) cannot be determined with routine methods. This critical uncertainty has furthered water pollution science toward new molecular approaches. Members of Bacteroides genus, such as Bacteroides thetaiotaomicron are found to have features that allow their use as alternative fecal indicators and for Microbial Source Tracking (MST). The overall aim of this study was to evaluate the concentration and fate of B. thetaiotaomicron, throughout a wastewater treatment facility and septage treatment facility. A large number of samples were collected and tested for E. coli and enterococci by both cultivation and qPCR assays. B. thetaiotaomicron qPCR equivalent cells (mean: 1.8 × 107/100 mL) were present in significantly higher concentrations than E. coli or enterococci in raw sewage and at the same levels in raw septage. The removal of B. thetaiotaomicron target qPCR signals was similar to E. coli and enterococci DNA during the treatment of these wastes and ranged from 3 to 5 log10 for wastewater and was 7 log10 for the septage. A significant correlation was found between B. thetaiotaomicron marker and each of the conventional indicators throughout the waste treatment process for both raw sewage and septage. A greater variability was found with enterococci when compared to E. coli, and CFU and equivalent cells could be contrasted by various treatment processes to examine removal and inactivation via septage and wastewater treatment. These results are compared and contrasted with other qPCR studies and other targets in wastewater samples providing a view of DNA targets in such environments.  相似文献   

17.
To understand how to optimize performance of a partially nitrifying plant, the dynamics of Nitrospira and Nitrobacter abundance were studied over a 1 year period using quantitative polymerase chain reaction (qPCR) and their relative contributions to nitrite oxidation assessed including the affects of temperature and dissolved oxygen (DO). Correlation coefficients linking shifts in the community composition of nitrite-oxidizing bacteria (NOB) to operational or environmental variables indicated Nitrospira was significantly and negatively correlated to nitrite concentrations (r = −0.45, P < 0.01) and DO (r = −0.46, P < 0.01), while temperature showed a strong positive correlation (r = 0.59, P < 0.0001). However, the Nitrobacter portion of the total NOB populations showed a positive correlations with DO (r = 0.38, P < 0.01) and hydraulic retention time (HRT) (r = 0.33, P < 0.05), as well as being negatively correlated with temperature (r = −0.49, P < 0.001) suggesting specific niche adaptations within the NOB community. Nitrospira was dominant being better adapted to the low DO and shorter sludge retention times (SRT) of this plant, while Nitrobacter increased in abundance during the winter months, when temperatures were lower and DO concentrations higher. Principal component analysis (PCA) results supported these findings by the close proximity of Nitrospira and temperature biplots of PC1 and PC2 as well as grouping Nitrobacter, NO2-N, HRT, and DO in the loadings together. The clustering of samples from specific dates also exhibited a strong seasonality.  相似文献   

18.
Liu Z  Cui F  Ma H  Fan Z  Zhao Z 《Water research》2011,45(19):6489-6495
Algae are one of the most important disinfection by-product (DBP) precursors in aquatic environments. The contents of DBP precursors in algae are influenced by not only environmental factors but also some xenobiotics. Trihalomethane formation potential (THMFP) in both the separate and interactive pollution of Microcystis aeruginosa and Nitrobenzene (NB) was investigated in batch experiment to discover the effects of xenobiotics on the yield of DBP precursors in the algal solution. The results show that in the separate NB solution, NB did not react with Cl2 to form trihalomethane (THM), whereas in the algae solution, THMFP had a significant positive linear correlation with M. aeruginosa density in both solution and extracellular organic matter (EOM). The correlation coefficients were 0.9845 (p = 3.567 × 10−4) and 0.9854 (p = 1.406 × 10−4), respectively. According to regression results, about 77.9% of the total THMFP came from the algal cells, while the rest came from EOM. When the interactive pollution of M. aeruginosa and NB occurred, the growth of algae was inhibited by NB. The density of M. aeruginosa in a high concentration NB solution (280 μg/L) was only 71.1% of that in the solution without NB after 5 days of incubation. However, THMFP in the mixture (algae and NB) and the EOM did not change significantly, and the productivity of THMFP by the algae (THMFP/108cells) increased with the increase in NB concentration. There was a significant linear correlation between THMFP/108cell and NB concentration (r = 0.9117, p < 0.01), which shows the contribution of the algae to THM formation was enhanced by NB. This result might be caused by the increased protein productivity and the biodegradation of NB by M. aeruginosa.  相似文献   

19.
We investigated the biodegradation of pyrene and benzo[a]pyrene in Phragmites australis rhizosphere sediment. We collected P. australis plants, rhizosphere sediments, and unvegetated sediments from natural aquatic sites and conducted degradation experiments using sediments spiked with pyrene or benzo[a]pyrene. Accelerated removal of pyrene and benzo[a]pyrene was observed in P. australis rhizosphere sediments with plants, whereas both compounds persisted in unvegetated sediments without plants and in autoclaved rhizosphere sediments with sterilized plants, suggesting that the accelerated removal resulted largely from biodegradation by rhizosphere bacteria. Initial densities of pyrene-utilizing bacteria were substantially higher in the rhizosphere than in unvegetated sediments, but benzo[a]pyrene-utilizing bacteria were not detected in rhizosphere sediments. Mycobacterium gilvum strains isolated from rhizosphere sediments utilized pyrene aerobically as a sole carbon source and were able to degrade benzo[a]pyrene when induced with pyrene. Phragmites australis root exudates containing phenolic compounds supported growth as a carbon source for the one Mycobacterium strain tested, and induced benzo[a]pyrene-degrading activity of the strain. The stimulatory effect on benzo[a]pyrene biodegradation and the amounts of phenolic compounds in root exudates increased when P. australis was exposed to pyrene. Our results show that Mycobacterium-root exudate interactions can accelerate biodegradation of pyrene and benzo[a]pyrene in P. australis rhizosphere sediments.  相似文献   

20.
Diversity of culturable bacterial populations within the Arsenic (As) contaminated groundwater of North Eastern state (Assam) of India is studied. From nine As contaminated samples 89 bacterial strains are isolated. 16S rRNA gene sequence analysis reveals predominance of Brevundimonas (35%) and Acidovorax (23%) along with Acinetobacter (10%), Pseudomonas (9%) and relatively less abundant (<5%) Undibacterium, Herbaspirillum, Rhodococcus, Staphylococcus, Bosea, Bacillus, Ralstonia, Caulobacter and Rhizobiales members. High As(III) resistance (MTC 10–50 mM) is observed for the isolates obtained from As(III) enrichment, particularly for 3 isolates of genus Brevundimonas   (MTC 50 mM). In contrast, high resistance to As(V) (MTC as high as 550 mM) is present as a ubiquitous property, irrespective of isolates' enrichment condition. Bacterial genera affiliated to other groups showed relatively lower degree of As resistance [MTCs of 15–20 mM As(III) and 250–350 mM As(V)]. As(V) reductase activity is detected in strains with high As(V) as well as As(III) resistance. A strong correlation could be established among isolates capable of reductase activity and siderophore production as well as As(III) tolerance. A large number of isolates (nearly 50%) is capable of anaerobic respiration using alternate inorganic electron acceptors [As(V), Se(VI), Fe(III), 3NO2−NO32, 4SO2−SO42, S2O32−S2O32]. Ability to utilize different carbon sources ranging from C2–C6 compounds along with some complex sugars is also observed. Particularly, a number of strains is found to possess ability to grow chemolithotrophically using As(III) as the electron donor. The study reports for the first time the identity and metabolic abilities of bacteria in As contaminated ground water of North East India, useful to elucidate the microbial role in influencing mobilization of As in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号