首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Brennan RA  Sanford RA  Werth CJ 《Water research》2006,40(11):2125-2134
Chitin, corncobs, and a mixture of chitin and corncobs were tested as potential electron donor sources for stimulating the reductive dechlorination of tetrachloroethene (PCE). Semi-batch, sand-packed columns were used to evaluate the donors with aerobic and anaerobic groundwaters containing varying degrees of alkalinity. In all experiments, acetate and butyrate were the dominant fatty acids produced, although propionate, valerate, formate, and succinate were also detected. From a multivariable regression analysis on the data, the presence of chitin, limestone, and dechlorinating culture inoculum were determined to be the most positive predictors of dechlorination activity. Chitin fermentation products supported the degradation of PCE to trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC), even in columns containing PCE DNAPL, whereas dechlorination activity was not observed in any of the columns containing corncobs alone. The longevity and efficiency of chitin as an electron donor source demonstrates its potential usefulness for passive, in situ field applications.  相似文献   

2.
Temperature dependence of reductive trichloroethene (TCE) dechlorination was investigated in an enrichment culture (KB-1), using lactate or propionate as electron donors at a temperature interval from 4 to 60 degrees C. Dechlorination was complete to ethene at temperatures between 10 and 30 degrees C (lactate-amended) and between 15 and 30 degrees C (propionate-amended). Dechlorination stalled at cis-1,2-dichloroethene (cDCE) at 4 degrees C (lactate-amended), at and below 10 degrees C (propionate-amended), and at 40 degrees C with both electron donors. No dechlorination of TCE was observed at 50 and 60 degrees C. Concentrations of Dehalococcoides had increased or remained constant after 15 days of incubation at temperatures involving complete dechlorination to ethene. Temperature dependence of dechlorination rates was compared using zero order degradation kinetics and a Monod growth-rate model for multiple electron acceptor usage with competition. Maximum growth rates (mu) and zero order degradation rates were highest for TCE dechlorination at 30 degrees C with lactate as substrate (mu(TCE) of 7.00+/-0.14 days(-1)). In general, maximum growth rates and dechlorination rates of TCE were up to an order of magnitude higher than rates for utilization of cis-dichloroethene (cDCE, mu(c)(DCE) up to 0.17+/-0.02 days(-1)) and vinyl chloride (VC, mu(VC) up to 0.52+/-0.09 days(-1)). Temperature dependence of maximum growth rates and degradation rates of cDCE and VC were similar and highest at 15-30 degrees C, with growth rates on cDCE being lower than on VC. This study demonstrates that bioaugmentation of chlorinated ethene sites may be more efficient at elevated temperatures.  相似文献   

3.
This study was conducted to examine the feasibility of using an anaerobic attached-film expanded-bed (AAFEB) process for the treatment of tetrachloroethylene (PCE) at 15°C. A laboratory-scale continuous-flow reactor, with an expanded-bed volume of 900 ml, was operated at hydraulic retention times of 1.8-4 h and influent PCE concentrations of 8–12 mg/l. Small samples (50 ml) of attached film media were used for batch testing 3–7 mg/l of PCE in a separate 300 ml AAFEB reactor. The attached films were a mixed anaerobic consortium grown on diatomaceous earth support particles under methanogenic conditions. Sucrose was used as an external electron donor and growth substrate. Reductive dechlorination of PCE to trichloroethylene (TCE), cis-1,2-dichloroethylene (DCE), vinyl chloride (VC) and ethylene (ETH) was observed. The conversion efficiency of PCE and TCE to lesser chlorinated compounds and ETH was above 98% during continuous-flow testing. VC accumulated as the major dechlorination product and ETH was produced at very low rates. The maximum PCE dechlorination rate, qmax, was 5.33 mg PCE/g volatile solids-day (32.1 μmol/g VS-d) and the one-half velocity coefficient, Ks, was 0.009 mg PCE/l (0.054 μM) under continuous-flow conditions. Since the AAFEB carried more than 20 g volatile solids per liter of bed, low temperature conversion rates would be expected to exceed 60 mg PCE/lbed-day. This indicates removal efficiencies greater than 99% could be obtained at hydraulic retention times of less than 1 h at ambient groundwater temperatures with this process.  相似文献   

4.
This study pilot-tested carboxymethyl cellulose (CMC) stabilized zero-valent iron (ZVI) nanoparticles (with a trace amount of Pd catalyst) for in situ destruction of chlorinated ethenes such as perchloroethylene (PCE) and trichloroethylene (TCE) and polychlorinated biphenyls (PCBs) that had been in groundwater for decades. The test site was located in a well-characterized secondary source zone of PCBs and chlorinated ethenes. Four test wells were installed along the groundwater flow direction (spaced 5 ft apart), including one injection well (IW), one up-gradient monitoring well (MW-3) and two down-gradient monitoring wells (MW-1 and MW-2). Stabilized nanoparticle suspension was prepared on-site and injected into the 50-ft deep, unconfined aquifer. Approximately 150 gallons of 0.2 g/L Fe-Pd (CMC = 0.1 wt%, Pd/Fe = 0.1 wt%) was gravity-fed through IW-1 over a 4-h period (Injection #1). One month later, another 150 gallons of 1.0 g/L Fe-Pd (CMC = 0.6 wt%, Pd/Fe = 0.1 wt%) was injected into IW-1 at an injection pressure <5 psi (Injection #2). When benchmarked against the tracer, approximately 37.4% and 70.0% of the injected Fe was detected in MW-1 during injection #1 and #2, respectively, confirming the soil mobility of the nanoparticles through the aquifer, and higher mobility of the particles was observed when the injection was performed under higher pressure. Rapid degradation of PCE and TCE was observed in both MW-1 and MW-2 following each injection, with the maximum degradation being observed during the first week of the injections. The chlorinated ethenes concentrations gradually returned to their pre-injection levels after ∼2 weeks, indicating exhaustion of the ZVI's reducing power. However, the injection of CMC-stabilized nanoparticle and the abiotic reductive dechlorination process appeared to have boosted a long-term in situ biological dechlorination thereafter, which was evidenced by the fact that PCE and TCE concentrations showed further reduction after two weeks. After 596 days from the first injection, the total chlorinated ethenes concentration decreased by about 40% and 61% in MW-1 and MW-2, respectively. No significant long-term reduction of PCB 1242 was observed in MW-1, but a reduction of 87% was evident in MW-2. During the 596 days of testing, the total concentrations of cis-DCE (dichloroethylene) and VC (vinyl chloride) decreased by 20% and 38% in MW-1 and MW-2, respectively. However, the combined fraction of cis-DCE and VC in the total chlorinated ethenes (PCE, TCE, cis-DCE and VC) increased from 73% to 98% and from 62% to 98%, respectively, which supports the notion that biological dechlorination of PCE and TCE was active. It is proposed that CMC-stabilized ZVI-Pd nanoparticles facilitated the early stage rapid abiotic degradation. Over the long run, the existing biological degradation process was boosted with CMC as the carbon source and hydrogen from the abiotic/biotic processes as the electron donor, resulting in the sustained enhanced destruction of the chlorinated organic chlorinated ethenes in the subsurface.  相似文献   

5.
Tiehm A  Schmidt KR  Pfeifer B  Heidinger M  Ertl S 《Water research》2008,42(10-11):2431-2438
Assessing changes in the isotopic signature of contaminants is a promising new tool to monitor microbial degradation processes. In this study, chloroethene degradation was proven by depletion of chloroethenes, formation of chloride, increase in protein content and stable carbon isotope fractionation. Aerobic degradation of vinyl chloride (VC) was found to proceed metabolically, with degradation rates of 0.48 and 0.29 d(-1); and growth yields of 9.7 and 6.4 g of protein/mol of VC at room and groundwater temperature, respectively. Cis-1,2-dichloroethene (cDCE) was degraded cometabolically under aerobic conditions when VC was provided as growth substrate. Aerobic degradation was associated with significant stable carbon isotope fractionation, with enrichment factors ranging from -5.4+/-0.4 per thousand for metabolic degradation of VC to -9.8+/-1.7 per thousand for cometabolic degradation of cDCE. Thus, it was demonstrated that stable carbon isotope fractionation is suitable for assessing aerobic chloroethene degradation, which can contribute significantly to site remediation.  相似文献   

6.
P.J. Haest 《Water research》2010,44(1):331-339
The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04 mM to saturation (8.4 mM). Biodegradation activity was highest at 0.3 mM TCE and no activity was found at concentrations from 4 to 8 mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1 mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.  相似文献   

7.
Contamination of vinyl chloride in shallow urban rivers in Osaka, Japan   总被引:3,自引:0,他引:3  
Vinyl chloride (VC) contamination had taken place in heavily polluted shallow rivers (Taishogawa and lower Hiranogawa Rivers) in Osaka, Japan. VC concentrations ranged from below detection limit to 55.6 micrograms l-1 (mean: 3.35 micrograms l-1, standard deviation: 5.96 micrograms l-1). Of 55 volatile organic compounds (VOCs) analyzed, concentrations of cis-1,2-dichloroethene (c-DCE), tetrachloroethene (PCE) and trichloroethene (TCE) were significantly correlated to VC concentrations in the rivers, indicating that they share common sources. The four VOCs were invariably present at approximate relative ratios of about 1:2.7:1.5:0.31 (VC: c-DCE: PCE: TCE). The similarity between sampling dates in the distribution pattern of the four VOCs concentrations were observed, but their concentrations were different between the dates. The concentrations of the four VOCs decreased with distance down the river. A sample from the upper Taishogawa River in July 1997 had 55.6 micrograms l-1 of VC, 152 micrograms l-1 of c-DCE, 86.2 micrograms l-1 of PCE and 18.4 micrograms l-1 of TCE, respectively. These values are about an order of magnitude higher than the other sites over the study period and are likely indicative of point source inputs.  相似文献   

8.
The Natural Attenuation of chlorinated hydrocarbons leaking from an abandoned landfill was the focus of an investigation conducted within the framework of the Bavarian joint research project “Nachhaltige Altlastenbewältigung unter Einbeziehung des natürlichen Reinigungsvermögens”. The research focused on two contaminant plumes, one having a diffuse TCE/PCE source and the other a cis- DCE source. The TCE/PCE plume had a maximum concentration of 52 μg/l total chlorinated hydrocarbons near the source area. Cis-DCE concentrations near the source of the second plume were up to 7,000 μg/l. In addition, degradation products (VC and Ethylene) were detected in this region, which indicate reductive dechlorination of the cis-DCE, TCE or PCE pollutants. However, other investigations indicate that the natural attenuation potential of the site is low and that the reduction in concentration is dependant more on dilution and other unknown processes. Stemming from this research, a new approach was developed using Solid Phase Micro Extraction (SPME) and GC/FID analytical techniques for microcosm testing. Furthermore, an airtight column was developed that allows the detection of sorption of highly volatile substances in low concentrations within an aquifer material.  相似文献   

9.
Aqueous diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) is examined for high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polyurethane/urea, and two polyethylene (PE) geomembranes coextruded with ethylene vinyl alcohol (EVOH). Additionally, the diffusion of benzene, toluene, ethylbenzene, and xylenes through polyurethane/urea geomembrane is examined. Permeation coefficients for HDPE, LLDPE, and polyurethane/urea range from 0.4-1.2 × 10−10 m2/s for TCE and 1.0-2.5 × 10−10 m2/s and for PCE. Experiments using the coextruded geomembranes have not reached equilibrium at 500 days, however parameters for the EVOH layer are deduced using data from these experiments. Using the parameters of the individual layers, single layer parameters were calculated. These single layer parameters range from 0.37-2.2 × 10−12 m2/s for TCE to 0.28-0.93 × 10−12 m2/s for PCE. Two hypothetical vapour intrusion cases are modelled using the parameters developed for the five geomembranes, and the calculated airspace concentrations decrease depending on the choice of vapour barrier in the following order: no barrier >0.75 mm LLDPE >1.5 mm polyurethane/urea >1.5 mm HDPE >0.75 mm LLDPE/EVOH/LLDPE >1.5 mm HDPE/EVOH/HDPE.  相似文献   

10.
Concentrations of chlorinated volatile organic compounds (Cl-VOCs) at the saturated-unsaturated interface region (SUIR; depth of ∼18 m) of a sandy phreatic aquifer were measured in two monitoring wells located 25 m apart. The concentrations of the Cl-VOCs obtained above and below the water table along a 413-day period are interpreted to depict variable, simultaneous and independent movement of trichlorothene, tetrachloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane, chloroform and 1,1-dichloroethane vapors in opposite directions across the SUIR.  相似文献   

11.
Blooms of toxic cyanobacteria such as Microcystis aeruginosa periodically occur within wastewater treatment lagoons in the warmer months, and may consequently cause contamination of downstream water and outages of the supply of recycled wastewater. Lab-scale sonication (20 kHz) was conducted on suspensions of M. aeruginosa isolated from a wastewater treatment lagoon, and two other algal strains, Anabaena circinalis and Chlorella sp., to investigate cell reduction, growth inhibition, release of microcystin and sonication efficiency in controlling the growth of the M. aeruginosa. For M. aeruginosa, for all sonication intensities and exposure times trialled, sonication led to an immediate reduction in the population, the highest reduction rate occurring within the initial 5 min. Sonication for 5 min at 0.32 W/mL, or for a longer exposure time (>10 min) at a lower power intensity (0.043 W/mL), led to an immediate increase in microcystin level in the treated suspensions. However, prolonged exposure (>10 min) to sonication at higher power intensities reduced the microcystin concentration significantly. Under the same sonication conditions, the order of decreasing growth inhibition of the three algal species was: A. circinalis > M. aeruginosa > Chlorella sp., demonstrating sonication has the potential to selectively remove/deactivate harmful cyanobacteria from the algal communities in wastewater treatment lagoons.  相似文献   

12.
C Su  RW Puls  TA Krug  MT Watling  SK O'Hara  JW Quinn  NE Ruiz 《Water research》2012,46(16):5071-5084
A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) and its chlorinated daughter products. Two EZVI delivery methods were used: pneumatic injection and direct injection. In the pneumatic injection plot, 2180 L of EZVI containing 225 kg of iron (Toda RNIP-10DS), 856 kg of corn oil, and 22.5 kg of surfactant were injected to remedy an estimated 38 kg of CVOCs. In the direct injection plot, 572 L of EZVI were injected to treat an estimated 0.155 kg of CVOCs. After injection of the EZVI, significant reductions in PCE and trichloroethene (TCE) concentrations were observed in downgradient wells with corresponding increases in degradation products including significant increases in ethene. In the pneumatic injection plot, there were significant reductions in the downgradient groundwater mass flux values for PCE (>85%) and TCE (>85%) and a significant increase in the mass flux of ethene. There were significant reductions in total CVOC mass (86%); an estimated reduction of 63% in the sorbed and dissolved phases and 93% reduction in the PCE DNAPL mass. There are uncertainties in these estimates because DNAPL may have been mobilized during and after injection. Following injection, significant increases in dissolved sulfide, volatile fatty acids (VFA), and total organic carbon (TOC) were observed. In contrast, dissolved sulfate and pH decreased in many wells. The apparent effective remediation seems to have been accomplished by direct abiotic dechlorination by nanoiron followed by biological reductive dechlorination stimulated by the corn oil in the emulsion.  相似文献   

13.
The purpose of this study is to assess the risks from exposure to 14 volatile organic compounds (VOCs) in selected groundwater sites in Taiwan. The study employs the multimedia environment pollutant assessment system (MEPAS) model to calculate the specific non-cancer and cancer risks at an exposure level of 1 μg/L of each VOC for a variety of exposure pathways. The results show that the highest specific non-cancer risk is associated with water ingestion of vinyl chloride (VC) and that the highest specific cancer risk is associated with indoor breathing of VC. The three most important exposure pathways for risk assessment for both non-cancer and cancer risks are identified as water ingestion, dermal absorption when showering, and indoor breathing. Excess tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethylene (DCE), and VC are detected in the groundwater aquifers of one dump site and one factory. However, the study suggests that the pollutants in the contaminated groundwater aquifers do not travel extensively with groundwater flow and that the resulting VOC concentrations are below detectable levels for most of the sampled drinking-water treatment plants. Nevertheless, the non-cancer and cancer risks resulting from use of the contaminated groundwater are found to be hundred times higher than the general risk guidance values. To ensure safe groundwater utilisation, remediation initiatives for soil and groundwater are required. Finally, the study suggests that the current criteria for VOCs in drinking water might not be capable of ensuring public safety when groundwater is used as the primary water supply; more stringent quality criteria for drinking water are proposed for selected VOCs.  相似文献   

14.
An anaerobic mixed microbial culture was enriched from soil and groundwater taken from a site contaminated with trichloroethene (TCE). This enrichment culture was divided into four subcultures amended separately with either perchloroethene (PCE), TCE, cis-dichloroethene (cDCE) or vinyl chloride (VC). In each of the four subcultures, the chlorinated ethenes were rapidly, consistently, and completely converted to ethene at rates of 30-50 micromol/l of culture per day, or an average 160 micro-electron equivalents/l of culture per day. These cultures were capable of sustained and rapid dechlorination of VC, and could not dechlorinate 1,2-dichloroethane, differentiating them from Dehalococcoides ethenogenes, the only known isolate capable of complete dechlorination of PCE to ethene. Chloroform (CF) and 1,1,1-trichloroethane, frequent groundwater co-contaminants with TCE and PCE, inhibited chlorinated ethene dechlorination. Most strongly inhibited was the final conversion of VC to ethene, with complete inhibition occurring at an aqueous CF concentration of 2.5 microM. Differences in rates and community composition developed between the different subcultures, including the loss of the VC enrichment culture's ability to dechlorinate PCE. Denaturing gradient gel electrophoresis of amplified bacterial 16S rRNA gene fragments identified three different DNA sequences in the enrichment cultures, all phylogenetically related to D. ethenogenes. Based on the PCR-DGGE results and substrate utilization patterns, it is apparent that significant mechanistic differences exist between each step of dechlorination from TCE to ethene, especially for the last important dechlorination step from VC to ethene.  相似文献   

15.
Thermal treatment is capable of removing significant free-phase chlorinated solvent mass while potentially enhancing bioremediation effectiveness by establishing temperature gradients in the perimeter of the source zone and by increasing electron donor availability. The objectives of this study were to determine the potential for enhanced reductive dechlorination activity at the intermediate temperatures that establish in the perimeter of the heated source zone, and to evaluate the effect of electron donor competition on the performance of the microbial reductive dechlorination process. Microcosms, constructed with tetrachloroethene- (PCE-) and trichloroethene- (TCE-) impacted soils from the Great Lakes, IL, and Ft. Lewis, WA, sites were incubated at temperatures of 24, 35, 50, 70, and 95 °C for 4 months. Reductive dechlorination did not occur in microcosms incubated at temperatures above 24 °C even though mesophilic PCE-to-cis-1,2-dichloroethene dechlorinators were present in Ft. Lewis soil suggesting electron donor limitations. Five days after cooling the microcosms to 24 °C and bioaugmentation with the methanogenic, PCE-to-ethene-dechlorinating consortium OW, at least 85% of the initial PCE and TCE were dechlorinated, but dechlorination ceased prior to complete conversion to ethene. Subsequent biostimulation with hydrogen gas mitigated the dechlorination stall, and conversion to ethene resumed. The results of this study demonstrated that temperatures >35 °C inhibit reductive dechlorination activity at the Great Lakes and Ft. Lewis sites, and that the majority of reducing equivalents released from the soil matrix during heat treatment are consumed in methanogenesis rather than reductive dechlorination. These observations suggest that bioaugmenting thermal treatment sites with cultures that do not contain methanogens may allow practitioners to realize enhanced dechlorination activity, a potential benefit of coupling thermal treatment with bioremediation.  相似文献   

16.
The cyanobacterium Microcystis, which occurs as colonies of different sizes under natural conditions, can produce toxic microcystins (MCs). To monitor the toxicity and assess the risk of Microcystis blooms in Lake Taihu, it is important to investigate the relationship between MC production and Microcystis colony size. In this study, we classified Microcystis collected from Zhushan Bay of Lake Taihu during blooms into four classes with size of <50 μm, 50–100 μm, 100–270 μm and >270 μm and studied their differences in MC production and genetic structure. The results showed that colonies with size of <50, 50–100, 100–270 and >270 μm produced 12.2 ± 11.2%, 19.5 ± 7.9%, 61.3 ± 12.6%, and 7.0 ± 9.6% of total MC, respectively. The proportion of cell density of colonies with size of 50–100, 100–270 and >270 μm was positively correlated with MC concentration during blooms, while that of colonies with size of <50 μm was negatively correlated. The MC cell quota tended to be higher during blooms in colonies with larger size except that of colonies with size of 100–270 μm was higher than that of colonies with size of >270 μm from June 11 to September 16. Colonies with size of <50 μm showed the highest proportion of the less toxic MC congener MC-RR, and colonies with size of >100 μm showed higher proportion of the most toxic MC congener MC-LR than colonies with size of <100 μm. Real-time PCR indicated that larger colonies had higher proportion of potential toxic genotype. Principal component analysis of PCR-denaturing gradient gel electrophoresis profile showed that cpcBA and mcyJ genotype compositions were different between colonies with size of <50 μm and colonies with size of >50 μm, and cpcBA genotype composition was also different among colonies with size of 50–100 μm, 100–270 μm and >270 μm. These results indicated that MC cell quota and congener composition were different in Microcystis colonies with different sizes in Lake Taihu during blooms, and the differences in MC production in colonies with different size resulted chiefly from the difference in their genotype composition. Therefore, the authorities of water quality monitoring and drinking water supply service in Lake Taihu should be alert that the toxicity of Microcystis colony with different size was different during blooms, and the high abundance of colonies larger than 50 μm could be an indicator of relatively high bloom toxicity.  相似文献   

17.
Parshetti GK  Doong RA 《Water research》2011,45(14):4198-4210
The coupled removal of priority pollutants by nanocomposite materials has recently been receiving much attention. In this study, trichloroethylene (TCE) and 2,4-dichlorophenol (DCP) in aqueous solutions were simultaneously removed by Fe/TiO2 nanocomposites under anoxic conditions in the presence of nickel ions and UV light at 365 nm. Both TCE and DCP were effectively dechlorinated by Fe/TiO2 nanocomposites, and the pseudo-first-order rate constants (kobs) for TCE and DCP dechlorination were (1.39 ± 0.05)×10−2 and (1.08 ± 0.05)×10−2 h−1, respectively, which were higher than that by nanoscale zerovalent iron alone. In addition, the kobs for DCP dechlorination was enhanced by a factor of 77 when Fe/TiO2 was illuminated with UV light for 2 h. Hydrodechlorination was found to be the major reaction pathway for TCE dechlorination, while DCP could undergo reductive dechlorination or react with hydroxyl radicals to produce 1,4-benzoquinone and phenol. TCE was a stronger electron acceptor than DCP, which could inhibit the dechlorination efficiency and rate of DCP during simultaneous removal processes. The addition of nickel ions significantly enhanced the simultaneous photodechlorination efficiency of TCE and DCP under the illumination of UV light. The kobs values for DCP and TCE photodechlorination by Fe/TiO2 in the presence of 20-100 μM Ni(II) were 30.4-136 and 13.2-192 times greater, respectively, when compared with those in the dark. Electron spin resonance analysis showed that the photo-generated electron-hole pairs could be effectively separated through Ni ions cycling, leading to the improvement of electron transfer efficiency of TCE and DCP by Fe/TiO2.  相似文献   

18.
Zhang M  He F  Zhao D  Hao X 《Water research》2011,45(7):2401-2414
Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited by desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, ∼44% of TCE sorbed in the potting soil was degraded in 30 h, compared to ∼82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1×cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith Farm soil, the presence of SDS at sub-cmc increased TCE degraded by ∼10%. However, effect of SDS on degradation of TCE in the potting soil was more complex. The presence of SDS at sub-cmc decreased TCE degradation by 5%, but increased degradation by 5% when SDS dosage was raised to 5×cmc. The opposing effects were attributed to combined effects of SDS on TCE desorption and degradation, release of soil organic matter and nanoparticle aggregation. The findings strongly suggest that effect of soil sorption on the effectiveness of Fe-Pd nanoparticles must be taken into account in process design, and soil organic content plays an important role in the overall degradation rate and in the effectiveness of surfactant uses.  相似文献   

19.
The development of bioreactive sediment caps, in which microorganisms capable of contaminant transformation are placed within an in situ cap, provides a potential remedial design that can sustainably treat sediment and groundwater contaminants. The goal of this study was to evaluate the ability and limitations of a mixed, anaerobic dechlorinating consortium to treat chlorinated ethenes within a sand-based cap. Results of batch experiments demonstrate that a tetrachloroethene (PCE)-to-ethene mixed consortium was able to completely dechlorinate dissolved-phase PCE to ethene when supplied only with sediment porewater obtained from a sediment column. To simulate a bioreactive cap, laboratory-scale sand columns inoculated with the mixed culture were placed in series with an upflow sediment column and directly supplied sediment effluent and dissolved-phase chlorinated ethenes. The mixed consortium was not able to sustain dechlorination activity at a retention time of 0.5 days without delivery of amendments to the sediment effluent, evidenced by the loss of cis-1,2-dichloroethene (cis-DCE) dechlorination to vinyl chloride. When soluble electron donor was supplied to the sediment effluent, complete dechlorination of cis-DCE to ethene was observed at retention times of 0.5 days, suggesting that sediment effluent lacked sufficient electron donor to maintain active dechlorination within the sediment cap. Introduction of elevated contaminant concentrations also limited biotransformation performance of the dechlorinating consortium within the cap. These findings indicate that in situ bioreactive capping can be a feasible remedial approach, provided that residence times are adequate and that appropriate levels of electron donor and contaminant exist within the cap.  相似文献   

20.
Ou H  Gao N  Deng Y  Qiao J  Wang H 《Water research》2012,46(4):1241-1250
In this study, the immediate and long-term impacts of shortwave ultraviolet (UV-C) irradiation on photosynthetic capacity, survival, and recovery of Microcystis aeruginosa were investigated. The risk of microcystin-LR (MC-LR) release during irradiation was also estimated. The cell density was determined by a flow cytometry, and typical chlorophyll fluorescence parameters, including the effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse amplitude modulated (PAM) fluorometer. Under various UV-C dosages (140-4200 mJ cm−2), photosynthetic capacities were reduced, to different degrees, accompanied by slight cytoclasis and complete degradation of extracellular MC-LR immediately after irradiation. In a 6-d cultivation following UV-C irradiation, cell density and extracellular MC-LR in the samples treated by 140 mJ cm−2 UV-C irradiation increased from 4.0 × 106 cells mL−1 and 8 μg L−1 to 5.1 × 106 cells mL−1 and 20 μg L−1, respectively. Significant M. aeruginosa cytoclasis (cell density from 4.0 × 106 to 1.0 × 106 cells mL−1) and MC-LR release (2-25 μg L−1) occurred when the UV-C dosage reached 350 mJ cm−2. Cell cytoclasis and MC-LR release were enhanced in the cultivated samples under higher UV-C dosages. Results revealed that photosynthetic parameters were useful tools to predict the recovery profiles of M. aeruginosa cells, and the MC-LR release risk should be considered after UV-C inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号