首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Nematodes, which occur abundantly in granular media filters of drinking water treatment plants and in distribution systems, can ingest and transport pathogenic bacteria and provide them protection against chemical disinfectants. However, protection against UV disinfection had not been investigated to date.In this study, Caenorhabditis elegans nematodes (wild-type strain N2) were allowed to feed on Escherichia coli OP50 and Bacillus subtilis spores before being exposed to 5 and 40 mJ/cm2 UV fluences, using a collimated beam apparatus (LP, 254 nm). Sonication (15 W, 60 s) was used to extract bacteria from nematode guts following UV exposure in order to assess the amount of ingested bacteria that resisted the UV treatment using a standard culture method. Bacteria located inside the gut of C. elegans were shown to benefit from a significant protection against UV. Approximately 15% of the applied UV fluence of 40 mJ/cm2 (as typically used in WTP) was found to reach the bacteria located inside nematode guts based on the inactivation of recovered bacteria (2.7 log reduction of E. coli bacteria and 0.7 log reduction of B. subtilis spores at 40 mJ/cm2). To our knowledge, this study is the first demonstration of the protection effect of bacterial internalization by higher organisms against UV treatment, using the specific case of E. coli and B. subtilis spores ingested by C. elegans.  相似文献   

2.
Nontuberculous mycobacteria are resistant to conventional water treatment; indeed, they have been recovered from a wide variety of environmental sources. Here, we applied the photoelectrocatalytic technique using a Ti/TiO2–Ag photoanode to inactivate mycobacteria. For a mycobacteria population of 5 × 108 CFU mL−1, we achieved 99.9 and 99.8% inactivation of Mycobacterium kansasii and Mycobacterium avium with rate constant of 6.2 × 10−3 and 4.2 × 10−3 min−1, respectively, after 240 min. We compared the proposed method with the photolytic and photocatalytic methods. Using a mycobacteria population of 7.5 × 104 CFU mL−1, the proposed Ti/TiO2–Ag photoanode elicited total mycobacteria inactivation within 3 min of treatment; the presence of Ag nanoparticles in the electrode provided 1.5 larger degradation rate constant as compared with the Ti/TiO2 anode (1.75 × 10−2 for M. kansassi and 1.98 × 10−2 for M. avium). We monitored the degradation of the metabolites released during cellular lysis by TOC removal, sugar release, chromatography, and mass spectrometry measurements; photoelectrocatalysis and Ti/TiO2–Ag photoanodes furnished the best results.  相似文献   

3.
It has been reported that Medium-Pressure (MP) ultraviolet (UV) lamps have an advantage over low-pressure (LP) lamps for water disinfection in terms of the photoreactivation of pure cultured bacteria. However, few studies have investigated the behavior of microorganisms in wastewater. Hence, in this study, the degree of photoreactivation, after UV exposure using both LP and MP lamps, in municipal wastewater samples was examined under a variety of conditions. Pure cultured Escherichia coli was also used to provide a comparison with previous studies.E. coli was found to undergo photoreactivation after both LP and MP exposure. The Colony Forming Ability (CFA) ratios were 0.60 and 0.32, and the percentage of photoreactivation was 50% and 20%, respectively, for LP and MP lamps with a germicidal UV dose of 5 mJ/cm2. However, the advantage of the MP lamp was diminished for larger UV doses, since no photoreactivation was detected when the UV dose was 15 mJ/cm2 for either LP or MP lamps. The microorganisms present in wastewater showed similar results to those of E. coli, however, no significant difference was found between the use of either a LP or a MP lamp. Also, when a UV dose of 40 mJ/cm2 was applied, the percentage photoreactivation was less than 1%, no matter which type of lamp was used. From this work, it is concluded that the selection of the type of UV lamp for wastewater treatment plants, as regards photoreactivation of total coliforms, is not critical as long as the applied germicidal UV dose is greater than 40 mJ/cm2.  相似文献   

4.
Guo M  Huang J  Hu H  Liu W  Yang J 《Water research》2012,46(13):4031-4036
Occurrence and degree of photoreactivation after ultraviolet (UV) exposure have been widely studied. However, the characteristics of photoreactivated microorganisms were rarely investigated. Hence, in this study, Escherichia coli with plasmids of ampicillin (amp)-resistance or fluorescence was used as indicators to examine the UV inactivation efficiencies and variations of characteristics of E. coli after subsequent photoreactivation.The experimental results indicate that the amp-resistant bacteria and the fluorescent bacteria used in this study had similar trends of UV dose-response curves. 3.5-log10 and 3-log10 reductions were achieved with a UV dose of 5 mJ/cm2 for the amp-resistant and fluorescent E. coli, respectively. There was no significant difference in the UV inactivation behavior, as compared with common strains of E. coli.For the amp-resistant E. coli and the fluorescent E. coli, after exposures with UV doses of 5, 15, 25, 40 and 80 mJ/cm2, the corresponding percent photoreactivations after a 4 h exposure to photoreactivating light were 1% and 46% respectively for a UV dose of 5 mJ/cm2, and essentially negligible for all other UV doses. Furthermore, the photoreactivated amp-resistant bacteria still have the ability of amp-resistance. And the revived fluorescent E. coli showed similar fluorescent behavior, compared with the untreated bacteria. The experimental results imply that after UV inactivation and subsequent photoreactivation, the bacteria retained the initial characteristics coded in the plasmid. This reveals a possibility that some characteristics of bacteria can retain or recover through photoreactivation, and a safety concern about pathogenicity revival might need to be considered with UV disinfection and photoreactivation.  相似文献   

5.
Dan Li  Miao He  Han-Chang Shi 《Water research》2009,43(13):3261-3269
Rotaviruses are double-stranded RNA viruses which are among the most resistant waterborne enteric viruses to UV disinfection. An integrated cell culture and real-time RT-PCR (ICC real-time RT-PCR) assay was developed to detect the infectivity of rotaviruses in water, which uses real-time RT-PCR to detect RNA produced by infectious rotaviruses during replication in host cells. Detection of rotaviral RNA in host cells provides direct evidence of the presence of infectious rotavirus rather than just the presence of rotavirus RNA. Using this newly developed method, the inactivation and resistance of rotavirus to UV treatments at various doses was evaluated. With an initial concentration of 2 × 104 PFU/ml simian rotavirus (SA11), a first-order linear relationship was obtained at UV dose range of 0-120 mJ cm−2, and the inactivation rate constant was estimated to be 0.0343 cm2 mJ−1 (R2 = 0.966). The dose-inactivation curve tailed off and reached plateau as the UV dose increased from 120 to 360 mJ cm−2, indicating resistance phenomena of sub-populations of SA11 at very high UV doses. A maximal reduction of 4.8 log10 was observed. Through parallel comparison with traditional culture assay, the ICC real-time RT-PCR method demonstrated more effective, sensitive and faster infectivity detection of rotavirus and, the results reveal that rotaviruses are more resistant to UV irradiation than previously reported with traditional cell culture assays.  相似文献   

6.
Kollu K  Ormeci B 《Water research》2012,46(3):750-760
Presence of particles is known to decrease the effectiveness of ultraviolet (UV) disinfection by shielding the targeted microorganisms from UV light. This study aims to provide an in-depth understanding on the effect of particles and flocs on UV disinfection by using a stable, well-defined and well-controlled synthetic system that can simulate the bioflocculation of particles and microorganisms in water and wastewater samples. The synthetic system was created by using Escherichia coli, latex particles (1, 3.2, 11, 25, and 45 μm), alginate, and divalent cations; and the bioflocculation of particles was achieved naturally, as it would occur in the environment, without using chemical coagulants. E. coli was quantified before and after UV disinfection using membrane filtration. Even in the absence of particles, some of the self-aggregated E. coli could survive a UV dose of 90 mJ/cm2. E. coli inactivation levels measured in the presence of particles were lower than the inactivation levels measured in the absence of particles. At low UV doses (<9 mJ/cm2), neither particle size nor degree of flocculation had a significant effect on the inactivation of E. coli. Particle size had a significant effect on the inactivation of E. coli only at high UV doses (80 mJ/cm2), and larger particles (e.g., 25 μm) protected bacteria more compared to smaller particles (e.g., 3.2 and 11 μm). What size of particles flocs were made of (3.2, 11, and 25 μm) did not make a significant difference on the inactivation levels of E. coli. For 3.2 μm particles, there was no significant difference in E. coli inactivation between non-flocculated and flocculated samples at any UV dose. For 11 and 25 μm particles, there was a significant difference in E. coli inactivation between non-flocculated and flocculated samples at 80 mJ/cm2. Degree of flocculation became a significant factor in determining the number of surviving bacteria only at high UV doses and only for larger particles.  相似文献   

7.
An inactivation study was performed with ozone in two laboratory-scale, continuous flow systems to determine the effects of temperature and u.v. light on the survival of Mycobacterium fortuitum, a potential microbial indicator for disinfection efficiency. Four temperatures were investigated in the range of 9–37°C. It was determined that a higher degree of inactivation occurred with ozone at elevated temperatures. The activation energy for M. fortuitum was found to be 18.3 kcal.When u.v. light was employed as a catalyst with ozone disinfection, there was no apparent increase in the degree of inactivation of M. fortuitum in either the clean system (deionized water-phosphate buffer) or secondary wastewater effluent. However, u.v. light in itself exerted a strong disinfecting effect.  相似文献   

8.
Two Advanced Oxidation Processes, namely vacuum-ultraviolet (VUV) photolysis at 172 nm and ultraviolet/hydrogen peroxide (UV/H2O2) were investigated for the degradation of anatoxin-a in aqueous solutions. Solutions of anatoxin-a-fumarate were treated with VUV light at 172 nm with a UV dose of 200 mJ/cm2, where fumaric acid served as a reference compound for a competition kinetics analysis. The second-order rate constant for the reaction between anatoxin-a and the hydroxyl radical was found to be (5.2 ± 0.3) × 109 M−1 s−1 and was independent of pH, temperature, and initial concentration of anatoxin-a. The direct photolysis of anatoxin-a using a medium pressure (MP) UV lamp was also investigated, in which case a UV dose of 1285 mJ/cm2 was required to degrade anatoxin-a by 88% and 50% at concentrations of 0.6 mg/L and 1.8 mg/L of toxin, respectively. Treatment of anatoxin-a with a low pressure (LP) UV lamp in the presence of 30 mg/L of H2O2 was examined, where it was found that more than 70% of toxin could be degraded at a UV dose of 200 mJ/cm2. The degradation arises from the oxidation of the toxin by hydroxyl radicals. The addition of H2O2 clearly enhanced the degradation of anatoxin-a, up to a concentration of 40 mg/L, after which addition of more H2O2 had little effect on the degradation kinetics of anatoxin-a. The effect of background constituents in the water on the degradation of anatoxin-a was also investigated using natural and synthetically produced model waters.  相似文献   

9.
Ultraviolet (UV) irradiation has become popular as a primary disinfectant because it is very effective against Cryptosporidium and does not directly form regulated disinfection by-products. Higher UV doses and UV advanced oxidation (UV/H2O2) processes are under consideration for the treatment of trace organic pollutants (e.g. pharmaceuticals, personal care products). Despite the disinfection effectiveness of UV light, a secondary disinfectant capable of maintaining a distribution system residual is required to meet current U.S. regulation. This study investigated changes in disinfection by-product (DBP) formation attributed to UV or UV/H2O2 followed by application of free chlorine to quench hydrogen peroxide and provide residual disinfectant. At a UV dose of 1000 mJ/cm2, trihalomethane (THM) yield increased by up to 4 μg/mg-C and 13 μg/mg-C when treated with low and medium pressure UV, respectively. With the addition of hydrogen peroxide, THM yield increased by up to 25 μg/mg-C (5 mg-H2O2/L) and 37 μg/mg-C (10 mg-H2O2/L). Although no changes in DBPs are expected during UV disinfection, application of UV advanced oxidation followed by chlorine addition was assessed with regard to impacts on DBP formation.  相似文献   

10.
Several waterborne outbreaks of giardiasis have been linked to discharge of wastewater effluents into surface water. Little is known about the infectivity of Giardia lamblia cysts present in UV treated wastewater effluents. In this study, the infectivity of G. lamblia cysts, recovered from primary effluent and secondary effluent, both upstream and downstream of operating full-scale UV reactors at four wastewater treatment plants, was assessed using the Mongolian gerbil model. Infectivity of cysts obtained from the primary effluents was scored as either strong or moderate for induction of infection in gerbils at three out of four wastewater treatment plants. G. lamblia recovered from secondary effluent both upstream and downstream of the UV reactors caused weak infections in the gerbils. The probability of weak infections caused by inoculums of 50-1400 cysts per gerbil was, on the average, reduced by approximately 10% at the four wastewater UV installations with coliform reduction equivalent doses ranging from 6 to 18 mJ/cm2. The UV systems provided considerably less inactivation of the parasite than expected based on the UV dose response of Giardia reported in the literature.  相似文献   

11.
Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm2). With higher doses (1000 mJ/cm2), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm2 MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm2 LP UV and four- to ten-fold increase with 40 mJ/cm2 MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm2, respectively, when followed by chloramination in nitrate-spiked samples but remained below the World Health Organization guideline value of 70 μg/L in all cases. MP UV and high LP UV doses (1000 mJ/cm2) increased chloral hydrate formation after subsequent chlorination (20-40% increase for 40 mJ/cm2 MP UV). These results indicate the importance of bench-testing DBP implications of UV applications in combination with post-disinfectants as part of the engineering assessment of a UV-chlorine/chloramine multi-barrier disinfection design for drinking water treatment.  相似文献   

12.
Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34°S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1 × 105 m L−1, and exposed to natural sunlight in 30-L reaction vessels. Water temperature ranged from 17 to 39 °C during the experiments lasting up to 6 h. Dark controls showed little inactivation and so it was concluded that the inactivation observed was primarily driven by non-thermal processes. The optimised reactor design achieved S90 values (cumulative exposure required for 90% reduction) for the test microorganisms in the range 0.63-1.82 MJ m−2 of Global Solar Exposure (GSX) without the need for TiO2 as a catalyst. High turbidity (840-920 NTU) only reduced the S90 value by <40%. Further, when all S90 means were compared this decrease was not statistically significant (prob. > 0.05). However, inactivation was significantly reduced for E. faecalis and P22 when the transmittance of UV wavelengths was attenuated by water with high colour (140 PtCo units) or a suboptimally transparent reactor lid (prob. < 0.05). S90 values were consistent with those measured by other researchers (ca 1-10 MJ m−2) for a range of waters and microorganisms. Although temperatures required for SODIS type pasteurization were not produced, non-thermal inactivation alone appeared to offer a viable means for reliably disinfecting low colour source waters by greater than 4 orders of magnitude on sunny days at 34°S latitude.  相似文献   

13.
Hyun-Seok Son 《Water research》2009,43(5):1457-464
In this study, the degradation mechanism of 1,4-dioxane using zero-valent iron (Fe0) in the presence of UV light was investigated kinetically. The degradation of 1,4-dioxane in Fe0-only, photolysis, and combined Fe0 and UV reactions followed the kinetics of a pseudo-first-order model. The degradation rate constant (19 × 10−4 min−1) in the combined reaction with UV-C (4.2 mW cm−2) and Fe0 (5 mg L−1) was significantly enhanced compared to Fe0-only (4.8 × 10−4 min−1) and photolytic reactions (2.25 × 10−4 min−1), respectively. The removal efficiency of 1,4-dioxane in combined reaction with Fe0 and UV within 4 h was enhanced by increasing UV intensity at UV-C region (34% at 4.2 mW cm−2 and 89% at 16.9 mW cm−2) comparing with the removal in the combined reaction with Fe0 and UV-A (29% at 2.1 mW cm−2, and 33% at 12.6 mW cm−2). It indicates that 1,4-dioxane was degraded mostly by OH radicals in the combined reaction. The degradation patterns in both Fe0-only and combined reactions were well fitted to the Langmuir-Hinshelwood model, implying that adsorption as well as the chemical reaction occurred. The transformation of Fe0 to Fe2+ and Fe3+ was observed in the Fe0-only and combined reactions, and the transformation rate of Fe0 was improved by UV irradiation. Furthermore, the reduction of Fe3+ was identified in the combined reaction, and the reduction rate was enhanced by an increase of UV energy. Our study demonstrated that the enhancement of 1,4-dioxane removal rate occurred via an increased supply of OH radicals from the Fenton-like reaction induced by the photolysis of Fe0 and H2O, and with producing less sludge.  相似文献   

14.
Previous work demonstrates that widely used fluoroquinolone antibacterial agents, including ciprofloxacin, are degraded by means of aqueous ultraviolet photolytic and titanium dioxide (TiO2) photocatalytic (using both ultraviolet-A (UVA) and visible light (Vis) irradiation) treatment processes. In this study, we investigate the effects of photolytic and photocatalytic treatment processes on the antibacterial activity of ciprofloxacin solutions under controlled laboratory conditions. In agreement with earlier work, rates of ciprofloxacin degradation under comparable solution conditions (100 μM ciprofloxacin, 0 or 0.5 g/L TiO2, pH 6, 25 °C) follow the trend UVA-TiO2 > Vis-TiO2 > UVA. Release of ammonia and fluoride ions is observed and a range of organic products have been identified with liquid chromatography-tandem mass spectrometry. However, the identified organic products all appear to retain the core quinolone structure, raising concerns about residual antibacterial potency of the treated solutions. Quantitative microbiological assays with a reference Escherichia coli strain indicate that the antimicrobial potency of ciprofloxacin solutions track closely with the undegraded ciprofloxacin concentration during photolytic or photocatalytic reactions. Quantitative analysis shows that for each mole of ciprofloxacin degraded, the antibacterial potency of irradiated solutions decreases by approximately one “mole” of activity relative to that of the untreated ciprofloxacin solution. This in turn indicates that the ciprofloxacin photo(cata)lytic transformation products retain negligible antibacterial activity relative to the parent compound. The energy demands for achieving one order of magnitude reduction in antibacterial activity within the experimental system are estimated to be 175 J/cm2 (UVA-only), 29 J/cm2 (Vis-TiO2), and 20 J/cm2 (UVA-TiO2), which indicates that the UVA-TiO2 photocatalysis is the most energy efficient process for achieving ciprofloxacin inactivation under laboratory conditions.  相似文献   

15.
Responses of soil microbial communities to weak electric fields   总被引:1,自引:0,他引:1  
Electrokinetically stimulated bioremediation of soils (electro-bioremediation) requires that the application of weak electric fields has no negative effect on the contaminant degrading microbial communities. This study evaluated the hypothesis that weak direct electric current (DC) fields per se do not negatively influence the physiology and composition of soil microbial communities given that secondary electrokinetic phenomena such as soil pH changes and temperatures are minimized. Mildly buffered, water-saturated laboratory mesocosms with agricultural soil were subjected for 34 days to a constant electric field (X = 1.4 V cm− 1; J ≈ 1.0 mA cm− 2) and the spatiotemporal changes of soil microbial communities assessed by fingerprints of phospholipids fatty acids (PLFA) and terminal restriction fragment length polymorphisms (T-RFLP) of bacterial 16S rRNA genes. DC-induced electrolysis of the pore water led to pH changes (< 1.5 pH units) in the immediate vicinity of the electrodes and concomitant distinct soil microbial community changes. By contrast, DC-treated bulk soil distant to the electrodes showed no pH changes and developed similar PLFA- and T-RFLP-fingerprints as control soil in the absence of DC. Our data suggest that the presence of an electric field, if suitably applied, will not influence the composition and physiology of soil microbial communities and hence not affect their potential to biodegrade contaminants.  相似文献   

16.
Ca-loaded Pelvetia canaliculata biomass was used to remove Pb2+ in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g−1) and hydroxyl (0.8 mmol g−1), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO3 and CaCl2) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H+ and Pb2+ for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants αCaH = 9 ± 1 and αCaPb = 44 ± 5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3 M HNO3) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73 × 10−7 cm2 s−1 for H+, 7.56 × 10−8 cm2 s−1 for Pb2+ and 6.37 × 10−8 cm2 s−1 for Ca2+.  相似文献   

17.
Chang CW  Chang WL  Chang ST 《Water research》2008,42(20):5022-5030
Cinnamon oil extracted from leaves of Cinnamomum osmophloeum has recently been proved as a promising antibacterial agent against Legionella pneumophila, an etiological agent of human pneumonia known as Legionnaires' disease. However, the pH effects on the efficacy of cinnamon oil against L. pneumophila and its applicability to recreational spring water remain unknown. We therefore determined the bactericidal activity of cinnamon oil at pH 3-10 in phosphate-buffered saline (PBS) and in four kinds of springs with various conductivity (259-5595 μs cm−1) and pH (2.1-7.7) levels. Results show L. pneumophila cells were more susceptible to cinnamon oil at pH 8-10 than at pH 4-6 in PBS, which became more evident as increasing contact time from 10 to 60 min. An increase in concentration of cinnamon oil and contact time significantly increased the anti-L. pneumophila activity (P ≤ 0.001), indicating a consistent biocidal effect regardless of pH. Interestingly, this dose-response biocidal effect was also observed in spring waters. Moreover, L. pneumophila of 4 log CFU ml−1 in spring waters was completely inactivated within 60 min by cinnamon oil at 300-750 μg ml−1, with the highest inactivation in alkaline hydrogen carbonate spring. The great bioactivity of cinnamon oil demonstrates its potential to be used to control Legionella growth in recreational spring water and possibly other niches generally at basic pH, e.g., cooling towers.  相似文献   

18.
Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent.Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day−1 (d−1) at 7.6 °C to 0.18 d−1 at 22.8 °C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d−1 to 0.03 d−1 at an average water temperature of 17 °C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d−1 at 7.7 °C to 0.04 d−1 at 24.6 °C. Calculated distribution coefficients (Kd) were 19,000 mL g−1, 324,000 mL g−1, and 293 mL g−1 for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were “free floating” or associated with particles <5 μm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 μm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities.The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.  相似文献   

19.
Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 µg cm2 d− 1) than from the biocide leaching leisure boat paint (1.1 µg cm2 d− 1). Biocide-free paints did leach considerably more Zn (4.4-8.2 µg cm2 d− 1) than biocide-containing leisure boat paint (3.0 µg cm2 d− 1) and ship paints (0.7-2.0 µg cm2 d− 1). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC50 = 6.4 µg l− 1) and Zn (EC50 = 25 µg l− 1) compared to the crustacean (Cu, LC50 = 2000 µg l− 1 Zn, LC50 = 890 µg l− 1), and the bacteria (Cu, EC50 = 800 µg l− 1 and Zn, EC50 = 2000 µg l− 1). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.  相似文献   

20.
Ipomoea aquatica with low-energy N+ ion implantation was used for the removal of both nitrogen and phosphorus from the eutrophic Chaohu Lake, China. The biomass growth, nitrate reductase and peroxidase activities of the implanted I. aquatica were found to be higher than those of I. aquatica without ion implantation. Higher NO3-N and PO4-P removal efficiencies were obtained for the I. aquatica irradiation at 25 keV, 3.9 × 1016 N+ ions/cm2 and 20 keV 5.2 × 1016 N+ ions/cm2, respectively (p < 0.05). Moreover, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those of the controls. I. aquatica with ion implantation was directly responsible for 51-68% N removal and 54-71% P removal in the three experiments. The results further confirm that the ion implantation could enhance the growth potential of I. aquatica in real eutrophic water and increase its nutrient removal efficiency. Thus, the low-energy ion implantation for aquatic plants could be considered as an approach for in situ phytoremediation and bioremediation of eutrophic waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号