首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engineering enhancement of slow sand filtration has been an enigma in large part because the mechanisms responsible for particle removal have not been well characterized. The presumed role of biological processes in the filter ripening process nearly precluded the possibility of enhancing filter performance since interventions to enhance biological activity would have required decreasing the quality of the influent water. In previous work, we documented that an acid soluble polymer controls filter performance. The new understanding that particle removal is controlled in large part by physical chemical mechanisms has expanded the possibilities of engineering slow sand filter performance. Herein, we explore the role of naturally occurring aluminum as a ripening agent for slow sand filters and the possibility of using a low dose of alum to improve filter performance or to ripen slow sand filters.  相似文献   

2.
Xing Zheng  Martin Jekel 《Water research》2010,44(10):3203-3213
Natural biofiltration processes have been verified as effective pre-treatment choice improving the performance of low-pressure membranes (MF/UF) in wastewater reclamation. In the present work, pilot-scale slow sand filtration (SSF) was used to simulate bank filtration at high filtration rates (from 0.25 m/h to 0.5 m/h) to filter secondary effluent prior to UF. The results showed that SSF improved the performance of UF to a large extent. Related to previous work biopolymers are considered as major dissolved organic foulants in treated wastewater. The removal of these organic foulants in slow sand filters and factors affecting the performance of SSF were investigated. It was observed that the removal of biopolymers took place mainly at the upper sand layer and was related to biological degradation. Tests on the degradability of biopolymers verified that they are biodegradable. Sixteen months monitoring of biopolymer concentration in the secondary effluent indicated that it varied seasonally. In winter season the concentration was much higher than during the summer months. Higher temperature and lower biopolymer concentration led to more effective foulants removal and more sustainable operation of SSF. During the whole experimental period, the performance of SSF was always better at filtration rate of 0.25 m/h than at 0.5 m/h. Under the present experimental conditions, SSF exhibited stable and effective biopolymer removal at temperatures higher than 15 °C, at biopolymer concentrations lower than 0.5 mg C/L and with sufficient oxygen available.  相似文献   

3.
The efficiency of peracetic acid (PAA) disinfection against enteric bacteria and viruses in municipal wastewaters was studied in pilot-scale. Disinfection pilot-plant was fed with the primary or secondary effluent of Kuopio municipal wastewater treatment plant or tertiary effluent from the pilot-scale dissolved air flotation (DAF) unit. Disinfectant doses ranged from 2 to 7 mg/l PAA in the secondary and tertiary effluents, and from 5 to 15 mg/l PAA in the primary effluents. Disinfection contact times were 4-27 min. Disinfection of secondary and tertiary effluents with 2-7 mg/l PAA and 27 min contact time achieved around 3 log reductions of total coliforms (TC) and enterococci (EC). PAA disinfection also significantly improved the hygienic quality of the primary effluents: 10-15 mg/l PAA achieved 3-4 log reductions of TC and EC, 5 mg/l PAA resulting in below 2 log reductions. F-RNA coliphages were more resistant against the PAA disinfection and around 1 log reductions of these enteric viruses were typically achieved in the disinfection treatments of the primary, secondary and tertiary effluents. Most of the microbial reductions occurred during the first 4-18 min of contact time, depending on the PAA dose and microorganism. The PAA disinfection efficiency remained relatively constant in the secondary and tertiary effluents, despite of small changes of wastewater quality (COD, SS, turbidity, 253.7 nm transmittance) or temperature. The disinfection efficiency clearly decreased in the primary effluents with substantially higher microbial, organic matter and suspended solids concentrations. The results demonstrated that PAA could be a good alternative disinfection method for elimination of enteric microbes from different wastewaters.  相似文献   

4.
OS Keen  NG Love  KG Linden 《Water research》2012,46(16):5224-5234
Most conventional biological treatment wastewater treatment plants (WWTPs) contain nitrate in the effluent. Nitrate undergoes photolysis when irradiated with ultraviolet (UV) light in the 200-240 and 300-325 nm wavelength range. In the process of nitrate photolysis, nitrite and hydroxyl radicals are produced. Medium pressure mercury lamps emitting a polychromatic UV spectrum including irradiation below 240 nm are becoming more common for wastewater disinfection. Therefore, nitrified effluent irradiated with polychromatic UV could effectively become a de facto advanced oxidation (hydroxyl radical) treatment process. UV-based advanced oxidation processes commonly rely on addition of hydrogen peroxide in the presence of UV irradiation for production of hydroxyl radicals. This study compares the steady-state concentration of hydroxyl radicals produced by nitrate contained in a conventional WWTP effluent to that produced by typical concentrations of hydrogen peroxide used for advanced oxidation treatment of water. The quantum yield of hydroxyl radical production from nitrate by all pathways was calculated to be 0.24 ± 0.03, and the quantum yield of hydroxyl radicals from nitrite was calculated to be 0.65 ± 0.06. A model was developed that would estimate production of hydroxyl radicals directly from nitrate and water quality parameters. In effluents with >5 mg-N/L of nitrate, the concentration of hydroxyl radicals is comparable to that produced by addition of 10 mg/L of H2O2. Nitrifying wastewater treatment plants utilizing polychromatic UV systems at disinfection dose levels can be expected to achieve up to 30% degradation of some micropollutants by hydroxyl radical oxidation. Increasing UV fluence to levels used during advanced oxidation could achieve over 95% degradation of some compounds.  相似文献   

5.
《Urban Water Journal》2013,10(1):33-37
The removal of heavy metals from storm and surface waters by slow sand filtration is described. The importance of speciation as a technique for exploring and improving the mechanisms of removal is identified. Laboratory-scale slow sand filters operating at conventional flow rate and depth were shown to be able to reduce concentrations of selected heavy metals (Cu, Cr, Pb and Cd) found in road runoff, surface water and sewage effluents to drinking water standard. Nitrogen, volatile solids and modified Stover speciation were used to differentiate between the potential mechanisms of removal, i.e. active biomass, organic adsorption and simple adsorption or precipitation on the surface of the sand. The data presented show that adsorption via organic ligands was the predominant mechanism for metal removal at the surface of the filter but chemical adsorption was the more important deeper in the filter. In the lower layers the adsorbed metals were more easily exchanged than the organically bound metals. The precise chemical ligands were not identified and varied from metal to metal. The most important operational factors affecting performance were therefore the concentration of organic matter, filter depth and the flow velocity.  相似文献   

6.
The aim of the present study was to estimate the performance of slow sand filtration (SSF) facilities, including the time needed for reaching stabilization (maturation), operated with surface water bearing high fecal contamination, representing realistic conditions of rivers in many emerging countries. Surface water spiked with wastewater was infiltrated at different pore water velocities (PWV) and samples were collected at different migration distances. The samples were analyzed for phages and to a lesser extent for fecal bacteria and enteric adenoviruses. At the PWV of 50 cm/d, at which somatic phages showed highest removal, their mean log10 removal after 90 cm migration was 3.2. No substantial differences of removal rates were observed at PWVs between 100 and 900 cm/d (2.3 log10 mean removal). The log10 mean removal of somatic phages was less than the observed for fecal bacteria and tended more towards that of enteric adenoviruses This makes somatic phages a potentially better process indicator than Escherichia coli for the removal of viruses in SSF. We conclude that SSF, and by inference in larger scale river bank filtration (RBF), is an excellent option as a component in multi-barrier systems for drinking water treatment also in areas where the sources of raw water are considerably fecally polluted, as often found in many emerging countries.  相似文献   

7.
The biosand filter (BSF) is a household slow sand filter that is operated intermittently such that an idle time of typically 18-22 h occurs in between daily charges of water. Virus attenuation during the idle time was investigated over repeated daily filtration cycles to capture the effect of media aging that encompasses processes occurring throughout the filter depth rather than restricted to the schmutzdecke at the media surface. A threshold aging period of about one to two weeks was required before virus attenuation began. The observed rates of MS2 and PRD-1 reduction were first-order and reached maxima of 0.061- and 0.053-log per hr, respectively, over seven-to-ten weeks. Suppression of microbial activity by sodium azide eliminated virus reduction during the idle time thus indicating that the operative media aging process was microbially mediated. The mechanism of virus reduction was not modification of media surfaces by physical/chemical or microbial processes. Instead, it appears that the activity of the microbial community within the filter is responsible. The most likely biological pathways are production of microbial exoproducts such as proteolytic enzymes or grazing of bacteria and higher microorganisms on virus particles. Implications of these findings for BSF design and operation and their relevance to other biological filtration technologies are discussed.  相似文献   

8.
Haberkamp J  Ruhl AS  Ernst M  Jekel M 《Water research》2007,41(17):3794-3802
Membrane fouling by macromolecular dissolved organic compounds is still a fundamental drawback in low-pressure membrane filtration of secondary effluent. In this study, pre-treatment of secondary effluent by coagulation and/or adsorption was investigated in terms of removal of different dissolved organic carbon (DOC) fractions, especially macromolecular substances. DOC fractionation has been characterised by size exclusion chromatography. Adsorption tests using four commercially available activated carbons yielded a removal of small as well as larger organic compounds, revealing differences in the affinity towards macromolecules depending on the type of applied activated carbon. By contrast, coagulation removed predominantly larger molecules, i.e., biopolymers and humic substances. In terms of DOC reduction, the coagulant ferric chloride was superior to aluminium chloride. A combination of coagulation and adsorption resulted in the addition of individual removal efficiencies, suggesting that different fractions of organic compounds were involved in each of the processes. After removal of macromolecular organic compounds either by coagulation or by adsorption, a significant reduction of membrane fouling was observed in tests using two different types of ultrafiltration flat-sheet membranes in 20-h cross-flow filtration tests.  相似文献   

9.
The filtration of phi X 174, MS2, and T4 bacteriophages out of tap water and secondary effluents was performed by rapid sand filtration. The viruses were characterized, and the influence of their microscopic characteristics on filterability was examined by comparing retention values, residence times, attachment, and dispersion coefficients calculated from an advection-dispersion model and residence time variation. The only factor observed to influence retention was virus size, such that the larger the virus, the better the retention. The difference was due to the more effective transport of viruses inside the media, an observation that runs counter to currently accepted filtration theory. Cake formation on top of the filter during the initial stages of secondary effluent filtration significantly increased headloss, eventually resulting in shorter filtration cycles. However, deep filters contain buffering zones where the pressure drop is amortized, thus allowing for continued filtration. After the effluent passed through the buffer zone, regular filtration was observed, during which considerable virus retention was achieved.  相似文献   

10.
Clogging in intermittent sand filter (ISF) systems was analyzed using an unsaturated flow model coupled with a reactive transport model. Based on the results of a model sensitivity analysis, several variables were determined to be important in the clogging phenomena observed in ISFs, including hydraulic loading rate, influent chemical oxygen demand (COD) concentration, filter dosing frequency, and time of operation. Several modes of operation were identified that minimize the growth of bacteria at the filter surface. Following the sensitivity analysis, several case studies where ISF clogging was documented were simulated using the model. The results from the case study model simulations were found to be correlated with the total suspended solids loading rate (TSSLR) at the point of clogging. A model was developed that relates biomass development at the surface of ISFs with the TSSLR that can be sustained without clogging. The engineering significance of the model is presented in terms of operational and design considerations.  相似文献   

11.
Point-of-use (POU) drinking water treatment technology enables those without access to safe water sources to improve the quality of their water by treating it in the home. One of the most promising emerging POU technologies is the biosand filter (BSF), a household-scale, intermittently operated slow sand filter. Over 500,000 people in developing countries currently use the filters to treat their drinking water. However, despite this successful implementation, there has been almost no systematic, process engineering research to substantiate the effectiveness of the BSF or to optimize its design and operation. The major objectives of this research were to: (1) gain an understanding of the hydraulic flow condition within the filter (2) characterize the ability of the BSF to reduce the concentration of enteric bacteria and viruses in water and (3) gain insight into the key parameters of filter operation and their effects on filter performance. Three 6-8 week microbial challenge experiments are reported herein in which local surface water was seeded with E. coli, echovirus type 12 and bacteriophages (MS2 and PRD-1) and charged to the filter daily. Tracer tests indicate that the BSF operated at hydraulic conditions closely resembling plug flow. The performance of the filter in reducing microbial concentrations was highly dependent upon (1) filter ripening over weeks of operation and (2) the daily volume charged to the filter. BSF performance was best when less than one pore volume (18.3-L in the filter design studied) was charged to the filter per day and this has important implications for filter design and operation. Enhanced filter performance due to ripening was generally observed after roughly 30 days. Reductions of E. coli B ranged from 0.3 log10 (50%) to 4 log10, with geometric mean reductions after at least 30 days of operation of 1.9 log10. Echovirus 12 reductions were comparable to those for E. coli B with a range of 1 log10 to >3 log10 and mean reductions after 30 days of 2.1 log10. Bacteriophage reductions were much lower, ranging from zero to 1.3 log10 (95%) with mean reductions of only 0.5 log10 (70%). These data indicate that virus reduction by BSF may differ substantially depending upon the specific viral agent.  相似文献   

12.
马鞍山市第二污水处理厂消毒方式比选及应用   总被引:1,自引:0,他引:1  
王雷 《山西建筑》2009,35(33):188-189
针对常见的几种消毒方法,从消毒的基本原理、运行的安全可靠性、投资及运行费用等方面进行比较,通过马鞍山市第二污水处理厂的应用实例,阐明了直接投加次氯酸钠溶液对污水厂出水进行消毒具有初始投资小、运营成本低、操作方便、安全可靠、易于维护等优点,值得大范围推广。  相似文献   

13.
S. Geno Lehman 《Water research》2009,43(7):2020-2028
Membrane fouling is an inevitable problem when microfiltration (MF) and ultrafiltraion (UF) are used to treat wastewater treatment plant (WWTP) effluent. While historically the use of MF/UF for water and wastewater treatment has been almost exclusively focused on polymeric membranes, new generation ceramic membranes were recently introduced in the market and they possess unique advantages over currently available polymeric membranes. Ceramic membranes are mechanically superior and are more resistant to severe chemical and thermal environments. Due to the robustness of ceramic membranes, strong oxidants such as ozone can be used as pretreatment to reduce the membrane fouling. This paper presents results of a pilot study designed to investigate the application of new generation ceramic membranes for WWTP effluent treatment. Ozonation and coagulation pretreatment were evaluated to optimize the membrane operation. The ceramic membrane demonstrated stable performance at a filtration flux of 100 gfd (170 LMH) at 20 °C with pretreatment using PACl (1 mg/L as Al) and ozone (4 mg/L). To understand the effects of ozone and coagulation pretreatment on organic foulants, natural organic matter (NOM) in four waters - raw, ozone treated, coagulation treated, and ozone followed by coagulation treated wastewaters - were characterized using high performance size exclusion chromatography (HPSEC). The HPSEC analysis demonstrated that ozone treatment is effective at degrading colloidal NOMs which are likely responsible for the majority of membrane fouling.  相似文献   

14.
As nucleic acids are major targets in bacteria during standardised UV disinfection (254 nm), inactivation rates also depend on bacterial DNA repair. Due to UV-related DNA modifications, PCR-based approaches allow for a direct detection of DNA damage and repair during UV disinfection. By applying different primer sets, the correlation between amplicon length and PCR amplification became obvious. The longer the targeted DNA fragment was, the more UV-induced DNA lesions inhibited the PCR. Regeneration of Pseudomonas aeruginosa, Enterococcus faecium, and complex wastewater communities was recorded over a time period of 66 h. While phases of intensive repair and proliferation were found for P. aeruginosa, no DNA repair was detected by qPCR in E. faecium. Cultivation experiments verified these results. Despite high UV mediated inactivation rates original wastewater bacteria seem to express an enhanced robustness against irradiation. Regeneration of dominant and proliferation of low-abundant, probably UV-resistant species contributed to a strong post-irradiation recovery accompanied by a selection for β-Proteobacteria.  相似文献   

15.
The aim of the study was to demonstrate the application potential of boron-doped diamond electrodes (BDD) in electrochemical disinfection of biologically treated sewage for direct recycling of domestic wastewater. Discontinuous bulk disinfection experiments with secondary effluents and model solutions were performed to investigate the influence of operating conditions and wastewater parameters on disinfection efficiency and formation of disinfection by-products (adsorbable organically bound halogens, AOX). The inactivation rate accelerates with increasing current density caused by a faster generation of electrochemical oxidants (ECO). It could be shown that the effect of OH radicals in case of the direct electrochemical disinfection of chloride-containing secondary effluents with BDD is negligible because of their fast reaction with typical radical scavengers. The dominating role of electrochemically generated free chlorine in the disinfection process could be explicitly verified. It could be also shown that the disinfection efficiency is strongly affected by the specific wastewater parameters temperature and pH. These effects can be explained by the behaviour of the reactive species. The migration-controlled generation of ECO can be accelerated under turbulent hydrodynamic conditions. The formation of disinfection by-products (AOX) correlates with the introduced electric charge Q applied per volume and is independent of the applied current density.  相似文献   

16.
Jenkins MW  Tiwari SK  Darby J 《Water research》2011,45(18):6227-6239
A two-factor three-block experimental design was developed to permit rigorous evaluation and modeling of the main effects and interactions of sand size (d10 of 0.17 and 0.52 mm) and hydraulic head (10, 20, and 30 cm) on removal of fecal coliform (FC) bacteria, MS2 bacteriophage virus, and turbidity, under two batch operating modes (‘long’ and ‘short’) in intermittent slow sand filters (ISSFs). Long operation involved an overnight pause time between feeding of two successive 20 L batches (16 h average batch residence time (RT)). Short operation involved no pause between two 20 L batch feeds (5 h average batch RT). Conditions tested were representative of those encountered in developing country field settings. Over a ten week period, the 18 experimental filters were fed river water augmented with wastewater (influent turbidity of 5.4-58.6 NTU) and maintained with the wet harrowing method. Linear mixed modeling allowed systematic estimates of the independent marginal effects of each independent variable on each performance outcome of interest while controlling for the effects of variations in a batch’s actual residence time, days since maintenance, and influent turbidity. This is the first study in which simultaneous measurement of bacteria, viruses and turbidity removal at the batch level over an extended duration has been undertaken with a large number of replicate units to permit rigorous modeling of ISSF performance variability within and across a range of likely filter design configurations and operating conditions.On average, the experimental filters removed 1.40 log fecal coliform CFU (SD 0.40 log, N = 249), 0.54 log MS2 PFU (SD 0.42 log, N = 245) and 89.0 percent turbidity (SD 6.9 percent, N = 263). Effluent turbidity averaged 1.24 NTU (SD 0.53 NTU, N = 263) and always remained below 3 NTU. Under the best performing design configuration and operating mode (fine sand, 10 cm head, long operation, initial HLR of 0.01-0.03 m/h), mean 1.82 log removal of bacteria (98.5%) and mean 0.94 log removal of MS2 viruses (88.5%) were achieved.Results point to new recommendations regarding filter design, manufacture, and operation for implementing ISSFs in local settings in developing countries. Sand size emerged as a critical design factor on performance. A single layer of river sand used in this investigation demonstrated removals comparable to those reported for 2 layers of crushed sand. Pause time and increased residence time each emerged as highly beneficial for improving removal performance on all four outcomes. A relatively large and significant negative effect of influent turbidity on MS2 viral removal in the ISSF was measured in parallel with a much smaller weaker positive effect of influent turbidity on FC bacterial removal. Disturbance of the schmutzdecke by wet harrowing showed no effect on virus removal and a modest reductive effect on the bacterial and turbidity removal as measured 7 days or more after the disturbance. For existing coarse sand ISSFs, this research indicates that a reduction in batch feed volume, effectively reducing the operating head and increasing the pore:batch volume ratio, could improve their removal performance by increasing batch residence time.  相似文献   

17.
This paper summarizes studies on the presence of acid-fast and yeast organisms in wastewater and water treatment plants and in surface water. These organisms were found to satisfy three of Bonde's criteria for indicator organisms: presence whenever pathogens are likely to be present; resistance at least equal to that of pathogens; and lack of regrowth in the post-treatment environment. This, plus prior data, indicates that these organisms are at least as acceptable as indicators of disinfection efficiency than the coliform group.  相似文献   

18.
A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1 x 10(6) cell/mL) treatments of river water dosed with microcystin LR (>80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1 x 10(2)-1 x 10(5) cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR. Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies.  相似文献   

19.
The decimal elimination capacity (DEC) of slow sand filtration (SSF) for Cryptosporidium parvum was assessed to enable quantitative microbial risk analysis of a drinking water production plant. A mature pilot plant filter of 2.56m(2) was loaded with C. parvum oocysts and two other persistent organisms as potential surrogates; spores of Clostridium perfringens (SCP) and the small-sized (4-7microm) centric diatom (SSCD) Stephanodiscus hantzschii. Highly persistent micro-organisms that are retained in slow sand filters are expected to accumulate and eventually break through the filter bed. To investigate this phenomenon, a dosing period of 100 days was applied with an extended filtrate monitoring period of 150 days using large-volume sampling. Based on the breakthrough curves the DEC of the filter bed for oocysts was high and calculated to be 4.7log. During the extended filtrate monitoring period the spatial distribution of the retained organisms in the filter bed was determined. These data showed little risk of accumulation of oocysts in mature filters most likely due to predation by zooplankton. The DEC for the two surrogates, SCP and SSCD, was 3.6 and 1.8log, respectively. On basis of differences in transport behaviour, but mainly because of the high persistence compared to the persistence of oocysts, it was concluded that both spores of sulphite-reducing clostridia (incl. SCP) and SSCD are unsuited for use as surrogates for oocyst removal by slow sand filters. Further research is necessary to elucidate the role of predation in Cryptosporidium removal and the fate of consumed oocysts.  相似文献   

20.
The investigation was designed to demonstrate the viability, or otherwise, of slow sand filtration as a means of tertiary treatment for secondary effluents derived from conventional aerobic, biological treatment processes operating with municipal wastewaters. Secondary effluents derived from both an activated-sludge plant and from a percolating filtration plant were employed.The basic slow sand filtration unit used consisted of a 140 mm i.d. perspex cylinder, 2.65 m in height containing a 950 mm depth of fine sand. Treatment rates were either 3.5 or 7.0 m d−1 and the sand used was of an effective size initially of 0.3 mm and then later of 0.6 mm.This investigation has demonstrated that a laboratory-scale slow sand filtration unit is capable of consistently removing at least 90% of the suspended solids, more than 65% of the remaining BOD and over 95% of the coliform organisms from the settled effluent from an operational percolating filter plant. The length of operational run averaged 20 days at 3.5 m d−1 and 13 days at 7.0 m d−1. Slightly inferior results were achieved when using the settled effluent from an operational activated sludge unit.Further investigation employing a horizontal-flow gravel pre-filter demonstrated that at flows of 2 m h−1 with a contact time of 33 min up to 82% of the suspended solids in the secondary effluent could be removed prior even to slow sand filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号