首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deng S  Bai R 《Water research》2004,38(9):2423-2431
Aminated polyacrylonitrile fibers (APANFs) were prepared and used as an adsorbent in a series of batch adsorption experiments for the removal of Cr(III) and Cr(VI) species from aqueous solutions of different pH values. The results show that significant amounts of Cr(III) or Cr(VI) species can be adsorbed by the APANFs, although the adsorption performances was greatly dependent upon the solution pH values. In general, the amounts of adsorption for Cr(III) species increased whereas that for Cr(VI) decreased with the increase of the solution pH values, which suggests that different adsorption mechanisms dominated the removal of Cr(III) or Cr(VI) species on the APANFs. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed that the adsorption of Cr(III) species on the APANFs was largely attributed to the formation of surface complexes between the nitrogen atoms on the APANFs and the Cr(III) species adsorbed, but the adsorption of Cr(VI) species on the APANFs was more likely effected through the formation of hydrogen bonds at high solution pH values or through both electrostatic attraction and surface complexation at low solution pH values. It was found that the Cr(VI)-adsorbed APANFs can be effectively regenerated in a basic solution and be reused almost without any loss of the adsorption capacity, while the Cr(III)-adsorbed APANFs needed to be regenerated in an acidic solution and the regeneration appeared to be less effective.  相似文献   

2.
Shi LN  Zhang X  Chen ZL 《Water research》2011,45(2):886-892
Bentonite-supported nanoscale zero-valent iron (B-nZVI) was synthesized using liquid-phase reduction. The orthogonal method was used to evaluate the factors impacting Cr(VI) removal and this showed that the initial concentration of Cr(VI), pH, temperature, and B-nZVI loading were all importance factors. Characterization with scanning electron microscopy (SEM) validated the hypothesis that the presence of bentonite led to a decrease in aggregation of iron nanoparticles and a corresponding increase in the specific surface area (SSA) of the iron particles. B-nZVI with a 50% bentonite mass fraction had a SSA of 39.94 m2/g, while the SSA of nZVI and bentonite was 54.04 and 6.03 m2/g, respectively. X-ray diffraction (XRD) confirmed the existence of Fe0 before the reaction and the presence of Fe(II), Fe(III) and Cr(III) after the reaction. Batch experiments revealed that the removal of Cr (VI) using B-nZVI was consistent with pseudo first-order reaction kinetics. Finally, B-nZVI was used to remediate electroplating wastewater with removal efficiencies for Cr, Pb and Cu > 90%. Reuse of B-nZVI after washing with ethylenediaminetetraacetic acid (EDTA) solution was possible but the capacity of B-nZVI for Cr(VI) removal decreased by approximately 70%.  相似文献   

3.
The behavior of chromium (Cr) in the activated sludge process (ASP) was evaluated in laboratory-scale, fill-and-draw activated sludge experiments. Both pH and the oxidation state of chromium were confirmed as critical parameters in the ASP for evaluating the behavior of chromium. More than 55% of chromium was removed when trivalent chromium [Cr(III)] was introduced into the influent while less than 60% was removed when hexavalent chromium [Cr(VI)] was added over a pH range from 5 to 9. As pH was increased, the removal increased when Cr(III) was introduced but the reverse occurred with Cr(VI). Introduction of Cr(VI) into the influent resulted in less than 80% of chromium associated with solids; however, with Cr(III), more than 90% of chromium was bound with solids. These results suggest that the ASP is capable of controlling the transport of Cr(III) to the environment but such is not case for Cr(VI).Theoretical consideration based on thermodynamics predicted that no reduction of Cr(VI) into Cr(III) should occur and the only redox reaction should be the oxidation of Cr(III) into Cr(VI). However, no oxidation of Cr(III) into Cr(VI) was observed; some Cr(VI) was reduced into Cr(III). Kinetic constraints may have impeded the oxidation of Cr(III). Under the conditions of this study, Cr(III) may have been removed through adsorption rather than precipitation as Cr(OH)3. Cr(VI) might be adsorbed on the bacterial surface through specific adsorption.  相似文献   

4.
We have proposed a new recovery system of hexavalent chromium Cr(VI) that is of great toxicity utilizing condensed-tannin gels derived from a natural polymer with many polyhydroxyphenyl groups. The adsorption mechanism of Cr(VI) to the tannin molecules was clarified. The adsorption mechanism consists of four reaction steps; the esterification of chromate with tannin molecules, the reduction of Cr(VI) to trivalent chromium Cr(III), the formation of carboxyl group by the oxidation of tannin molecules and the ion exchange of the reduced Cr(III) with the carboxyl and hydroxyl groups. It was found in this recovery system that a large amount of proton was consumed accompanied with the reduction of Cr(VI) so that the acidic solution containing Cr(VI) was transferred automatically to neutral one by choosing an appropriate initial pH. The carboxyl group which was created by the oxidation of tannin molecules parallel to the reduction of Cr(VI) to Cr(III) contributed to an increase in the ion-exchange sites of the reduced Cr(III). The maximum adsorption capacity of Cr(VI) reached 287 mg Cr/g dry tannin gel under the conditions of 0.77 water content of tannin gel and the initial pH = 2. This adsorption capacity was five to ten times higher than that obtained by the ion exchange between ordinary Cr(III) and tannin molecules for the tannin gels prepared under similar conditions. The system proposed here will provide an important information on a zero-emission-oriented process because it has such advantages as higher adsorption capacity of chromium and lower volume of secondary wastes compared with conventional process.  相似文献   

5.
Bifunctional resin-supported nanosized zero-valent iron (N–S-ZVI) composite was developed by combining the oxidation properties of nZVI/O2 with adsorption features of iron oxides and anion-exchange resin N–S. In batch culture experiments, N–S and the N–S-ZVI composite were examined for As(III) and As(V). The results reveal that ZVI in the composite played a key role in enhancing As(III) removal. The N–S-ZVI composites could oxidize more toxic As(III) to less toxic As(V) with high efficiency under ambient conditions without the need of noble metals. At the same time, the oxidized As(V) could be effectively removed by adsorption onto the surface of composites. The mechanisms for the oxidation of As(III) to As(V) and the simultaneous removal of As(V) are proposed. In order to investigate the potential performance of N–S-ZVI in practical use, the effects of solution pH and coexisting anions on arsenite removal and on fixed-bed column treatment of simulated waters were studied. All the results indicated that the bifunctional composites have a great potential for As(III) removal from contaminated waters.  相似文献   

6.
Mak MS  Lo IM  Liu T 《Water research》2011,45(19):6575-6584
A column study was conducted using a combination of zero-valent iron (Fe0) and iron oxide-coated sand (IOCS) for removing Cr(VI) and As(V) from groundwater. The removal efficiency and mechanism of Cr(VI) and As(V), the effects of humic acid (HA), and the various configurations of Fe0 and IOCS were investigated. The results showed that the use of an Fe0 and IOCS mixture in a completely mixed configuration can achieve the highest removal of both Cr(VI) and As(V), whilst the effects of HA were marginal in using these reactive materials. The solid phase analysis revealed the occurrence of the synergistic effect in these reactive materials as Fe2+ can be adsorbed onto the IOCS and transform the iron oxides to magnetite, providing more reactive surface area for Cr(VI) reduction and reducing the passivation on the Fe0. As(V) can then be removed by adsorption onto these iron corrosion products. HA can be adsorbed onto the IOCS so that the impacts of the deposition of HA aggregates on the Fe0 surface can be reduced, thus enhancing the Fe0 corrosion.  相似文献   

7.
Rangsivek R  Jekel MR 《Water research》2005,39(17):4153-4163
Infiltration of stormwater runoff contaminated with metals is often questionable in several cases due to its long-term potential to cause deterioration of groundwater quality. To ensure the quality of filtrate, a pre-treatment of contaminated runoff is required. This study investigates the processes of copper and zinc ion removal from stormwater runoff using zero-valent iron (ZVI, Fe0). Kinetic and equilibrium tests were performed with laboratory-prepared and in situ stormwater runoff samples collected from roof, street and highway catchments. Based on the results, a substantial portion of Cu2+ is reduced and transformed to insoluble forms of Cu0 and Cu2O. Unlike copper, the adsorption and co-precipitation associated with freshly precipitated iron oxides play important roles for the removal of Zn2+. Investigations under various water quality conditions demonstrated a relatively minor impact on Cu2+ uptake rates. However, the different conditions apparently altered the removal stoichiometry and phases of the copper deposits. The removal rates of Zn2+ increase with higher dissolved oxygen (DO), ionic strength (IS), temperature (T) and pH. Dissolved organic carbon (DOC) in runoff samples forms complexes with metals and Fe2+, thereby kinetically decreasing the metal uptake rates. Furthermore, depending on its composition, a larger molecular weight organic fraction was found to preferentially compete for the adsorption sites. The study demonstrates that ZVI is a promising medium for achieving comparable capacity to a commercial adsorbent like granular ferric hydroxide (GFH). Long-term performance of ZVI, however, may be limited and governed by the formation of non-conductive layers of iron and cuprous oxides.  相似文献   

8.
Xu Y  Zhao D 《Water research》2007,41(10):2101-2108
Laboratory batch and column experiments were conducted to investigate the feasibility of using a new class of stabilized zero-valent iron (ZVI) nanoparticles for in situ reductive immobilization of Cr(VI) in water and in a sandy loam soil. Batch kinetic tests indicated that 0.08g/L of the ZVI nanoparticles were able to rapidly reduce 34mg/L of Cr(VI) in water at an initial pseudo first-order rate constant of 0.08h(-1). The extent of Cr(VI) reduction was increased from 24% to 90% as the ZVI dosage was increased from 0.04 to 0.12g/L. The leachability of Cr preloaded in a Cr-loaded sandy soil was reduced by nearly 50% when the soil was amended with 0.08g/L of the ZVI nanoparticles in batch tests at a soil-to-solution ratio of 1g: 10mL. Column experiments indicated that the stabilized ZVI nanoparticles are highly deliverable in the soil column. When the soil column was treated with 5.7 bed volumes of 0.06g/L of the nanoparticles at pH 5.60, only 4.9% of the total Cr was eluted compared to 12% for untreated soil under otherwise identical conditions. The ZVI treatment reduced the TCLP leachability of Cr in the soil by 90%, and the California WET (Waste Extraction Test) leachability by 76%. The stabilized ZVI nanoparticles may serve as a highly soil-dispersible and effective agent for in situ reductive immobilization of chromium in soils, groundwater, or industrial wastes.  相似文献   

9.
The kinetics of Se(IV) removal by zero valent iron (ZVI) open to the air as a function of pH and the involved mechanisms were investigated in this study. The specific rate constants of Se(IV) removal by ZVI decreased from 92.87 to 6.87 L h−1 m−2 as pH increased from 4.0 to 7.0. The positive correlation between the removal rate of Se(IV) and the generation rate of Fe(II) and the depression of Se(IV) removal in the presence of 1,10-phenanthroline indicated that both ZVI and adsorbed Fe(II) on ZVI surface contributed to the reductive removal of Se(IV). The soft X-ray STXM measurement confirmed the adsorption of Fe(II) on the surface of ZVI and freshly formed ferric (hydr)oxides. Se(IV) was removed by adsorption followed by reduction to Se(0) on ZVI surface at pH 4.0–7.0, as revealed by XANES spectra. A core-shell structure was observed when ZVI reacted with Se(IV)-containing solution for 3 h at pH 6.0. Se(IV) was reduced to Se(0) and co-precipitated with the freshly formed Fe(III), forming the shell surrounding the iron core. After reaction for 24 h, the generated Se(0) was surrounded by multiple layers of Fe(III) oxides/hydroxides. SEM images and XRD patterns revealed that the corrosion products of ZVI at pH 6.0 transformed from amorphous iron hydroxides to lepidocrocite (γ-FeOOH) as reaction proceeded. The final corrosion products of ZVI contained both lepidocrocite and goethite at pH 5.0 while they were X-ray amorphous at pH 4.0 and 7.0.  相似文献   

10.
The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals.  相似文献   

11.
The interactions of co-present Cr(VI) and As(V), and the influences of humic acid and bicarbonate in the process of Cr(VI) and As(V) removal by Fe0 were investigated in a batch setting using simulated groundwater with 5 mM NaCl, 1 mM Na2SO4, and 0.8 mM CaCl2 as background electrolytes at an initial pH value of 7. Cr(VI) and As(V) were observed to be subject to different impacts induced by co-existing As(V) or Cr(VI), humic acid and bicarbonate, originating from their distinct removal mechanisms by Fe0. Cr(VI) removal is a reduction-dominated process, whereas As(V) removal principally involves adsorption onto iron corrosion products. Experimental results showed that Cr(VI) removal was not affected by the presence of As(V) and humic acid. However, As(V) removal appeared to be inhibited by co-present Cr(VI). When the Cr(VI) concentration was 2, 5, and 10 mg/L, in the absence of humic acid and bicarbonate, As(V) removal rate constants were decreased by 27.9%, 49.0%, and 61.2%, respectively, which probably resulted from competition between Cr(VI) and As(V) for adsorption sites of the iron corrosion products. Furthermore, the presence of humic acid significantly varied As(V) removal kinetics by delaying the formation and aggregation of iron hydroxides due to the formation of soluble Fe-humate complexes and stably dispersed fine iron hydroxides colloids. In the presence of bicarbonate, both Cr(VI) and As(V) removal was increased and the inhibitory effect of Cr(VI) on As(V) removal was suppressed, resulting from the buffering effects and the promoted iron corrosion induced by bicarbonate, and the formation of CaCO3 in solution, which enhanced As(V) adsorption.  相似文献   

12.
Lo IM  Lam CS  Lai KC 《Water research》2006,40(3):595-605
Zero-valent iron (Fe0) was used to remove hexavalent chromium, Cr(VI), in groundwater via a coupled reduction-oxidation reaction. Nine columns were set up under various groundwater geochemistry to investigate the effects of hardness and carbonate on Cr(VI) removal. The Cr(VI) removal capacity of Fe0 was found to be about 4 mgCr/g Fe0 in the control column (i.e., column 1). A slight decrease in the Cr(VI) removal capacity was found in the presence of calcium hardness. However, there was a 17% drop in the Cr(VI) removal capacity when magnesium hardness was present at low to moderately hard level. Results also revealed that carbonate changed the morphology of the Fe0 by formation of pale green precipitates on the iron filings. Furthermore, there was a 33% decrease in the Cr(VI) removal capacity of Fe0 when both carbonate and hardness ions were present. In general, the presence of hardness ions and carbonate in groundwater have great impact on the Fe0 by formation of passivated precipitates, such as CaCO3, on the Fe0 surface resulting in a diminished lifespan of the Fe0 by blocking electron transfer.  相似文献   

13.
Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating.  相似文献   

14.
The effects of Aldrich humic acids (HA) on the removal of Zero-valent iron (ZVI) was investigated in laboratory systems. In batch, the removal rate of Zn and Ni (5 mg l(-1)) was, respectively, 2.8 and 2.4 times lower in the presence of HA (20 mg l(-1)) than in the absence of HA, presumably due to the formation of HA-heavy metal complexes which prevented the removal reactions at the ZVI surface. Chromate removal was not affected. In a column test, two parallel systems were supplemented with a continuous input of simulated groundwater containing a mixture of the heavy metals Zn, Ni and Cr(VI) (5 mg l(-1) each), with or without HA (at 20 mg l(-1)). Initially, the two column systems efficiently (>90%) removed the heavy metals from the simulated groundwater. When the input heavy metal concentration was increased to 8-10 mg l(-1), a significant breakthrough of Ni and Zn, up to 80%, occurred in the column system fed with HA. Chromate and HA did not significantly break through. After 60 weeks, the effect of HA on leaching of the accumulated metals (approx. 2 mg g(-1)) was investigated. No significant leaching was observed. The results of this study suggest that the impact of dissolved organic matter on the efficiency and lifetime of a ZVI barrier for in situ removal of heavy metals should be considered in the design of the barrier.  相似文献   

15.
Frim JA  Rathman JF  Weavers LK 《Water research》2003,37(13):3155-3163
This study focused on the sonochemical degradation of ethylenediaminetetraacetic acid (EDTA) and chromium-EDTA complexes. Degradation of the copper(II)-EDTA complex was also investigated as a comparison metal complex. A 90% degradation of a 150-microM EDTA solution with continuous O2-bubbling was shown for the 20-kHz system in approximately 3 h (kpseudo-first order = 1.22 x 10(-2) min-1) and less than 1 h for the 354-kHz system (kpseudo-first order = 5.42 x 10(-2) min-1). These results are consistent with the higher concentrations of hydrogen peroxide found in the higher frequency system and an expected oxidation of EDTA in bulk solution. The presence of a chelated metal decreased the rate of degradation at both frequencies. Cr(III)-EDTA degraded the slowest, supporting the theory that the extremely slow ligand exchange rate of chromium is the determining factor in how fast degradation by hydroxyl radical can occur. The 354-kHz system showed a 17% decrease in the original 150-microM Cr(III)-EDTA complex after 3 h of sonication. All of the chromium from the degraded EDTA complex existed as a combination of oxidized Cr(VI) and possibly small amounts of a new Cr(III)-organic complex (Cr(III)-Y). The 20-kHz system showed a similar extent of degradation (16%) after 3 h of sonication, despite lower hydroxyl radical production. Fifty percent of the chromium from the degraded EDTA complex was found as free Cr3+ ion, with the remaining 50% existing as both Cr(III)-Y and Cr(VI). Varying degrees of bulk oxidation, near-bubble thermolysis, and perhaps different degradation pathways at the two frequencies are responsible for these differences.  相似文献   

16.
Effective and economical removal of selenium (Se) in agricultural drainage water is very important in Se bioremediation. Zero-valent iron (ZVI) and a redox mediator [anthraquinone-2,6-disulfonate (AQDS)] were assessed for their ability to enhance the removal of Se(VI) or Se(IV) (500 µg/L) in synthetic drainage water by Enterobacter taylorae. The results showed that E. taylorae was capable of using inexpensive sucrose to remove Se from the drainage water. During a 7-day experiment, Se(VI) was almost entirely reduced to Se(0) and transformed to organic Se in the drainage water with sucrose levels of 500 to 1000 mg/L. Addition of ZVI to the drainage water increased the removal of total soluble Se to 94.5-96.5% and limited the production of organic Se. Addition of AQDS to the drainage water with or without ZVI decreased Se(VI) removal, but enhanced the removal of Se(IV), suggesting that E. taylorae only can use anthrahydroquinone-2,6-disulfonate (AHQDS, a reduced form of AQDS) to respire Se(IV), and not Se(VI). These results show that ZVI has promising application potential in the bioremediation of Se in Se-contaminated water.  相似文献   

17.
Elevated levels of chromium, partly attributable to historical disposal of chromite ore processing residue, are present in sediment along the eastern shore of the lower Hackensack River near the confluence with Newark Bay. Due to anaerobic conditions in the sediment, the chromium is in the form of Cr(III), which poses no unacceptable risks to human health or to the river ecology. However, as water quality conditions have improved since the 1970s, aerobic conditions have become increasingly prevalent in the overlying water column. If these conditions result in oxidation of Cr(III) to Cr(VI), either under quiescent conditions or during severe weather or anthropogenic scouring events, the potential for adverse ecological effects due to biological exposures to Cr(VI) is possible, though the reaction kinetics associated with oxidation of Cr(III) to Cr(VI) are unfavorable. To investigate the stability of Cr(III) in Hackensack River sediments exposed to oxic conditions, sediment suspension and oxidation experiments and intertidal sediment exposure experiments that exposed the sediments to oxic conditions were conducted. Results revealed no detectable concentrations of Cr(VI), and thus no measurable potential for total chromium oxidation to Cr(VI). Furthermore, total chromium released from sediment to elutriate water in the oxidation and suspension experiments ranged from below detection (<0.01 mg/L) to 0.18 mg/L, below the freshwater National Recommended Water Quality Criteria (NRWQC) of 0.57 mg/L for Cr(III). These results support conclusions of a stable, in situ geochemical environment in sediments in the lower Hackensack River with respect to chromium. Results showed that chemicals other than Cr(VI), including copper, lead, mercury, zinc, and PCBs, were released at levels that may pose a potential for adverse ecological effects.  相似文献   

18.
Park D  Yun YS  Jo JH  Park JM 《Water research》2005,39(4):533-540
When synthetic wastewater containing Cr(VI) was placed in contact with the dead fungal biomass of Aspergillus niger, the Cr(VI) was completely removed from aqueous solution, whereas Cr(III), which was not initially present, appeared in aqueous solution. Desorption and X-ray photoelectron spectroscopy (XPS) studies showed that most of the Cr bound on the biomass was in trivalent form. These results indicated that the main mechanism of Cr(VI) removal was a redox reaction between Cr(VI) and the dead fungal biomass, which is quite different from previously reported mechanisms. The influences of contact time, pH, Cr(VI) concentration, biomass concentration and temperature on Cr(VI) removal were also evaluated. The Cr(VI) removal rate increased with a decrease in pH and with increases in Cr(VI) concentration, biomass concentration and temperature. Although removal kinetics was dependent on the experimental conditions, Cr(VI) was completely removed in the aqueous solution. In conclusion, a new mechanism of Cr(VI) removal by the dead fungal biomass has been proposed. From a practical viewpoint, this abundant and inexpensive dead fungal biomass has potential application in the conversion of toxic Cr(VI) into less toxic or nontoxic Cr(III).  相似文献   

19.
The kinetics of hexavalent chromium reduction by metallic iron   总被引:1,自引:0,他引:1  
J.P. Gould 《Water research》1982,16(6):871-877
The rate reduction of hexavalent chromium (Cr(VI)) by metallic iron under a range of conditions was studied in batch systems. The chemical variables studied were the Cr(VI) concentration, hydrogen ion concentration and surface area of iron. The influence of ionic strength and mixing rate was also examined. The reaction kinetics were found to be dependent on hydrogen ion concentration, hexavalent chromium concentration and iron surface area and to adhere to the following kinetic expression.
.The rate constant was evaluated and found to have a value of 5.45 × 10−5 1 cm−2 min−1 over a wide range of conditions.The rate constant was found to increase as mixing rate increased up to a maximum value beyond which the rate was essentially independent of mixing. Increases in ionic strength were found to result in a rapid decrease in the rate constant at ionic strengths below 0.1 M. Further increases in ionic strength had no detectable impact on the rate constant. All rate determination studies were run in the mixing and ionic strength independent regions of these systems.Reaction stoichiometry was found to be, with one exception, independent of environmental conditions. In general, 1.33 mol of iron dissolved for each mol of Cr(VI) reduced. This highly efficient utilization of iron in the reduction suggests that hydrogen generated during iron dissolution may be acting as a reductant for the Cr(VI). The single parameter which influenced the reaction stoichiometry was the initial Cr(VI) concentration. The ratio of Cr(VI) reduced to iron dissolved increased rapidly as the Cr(VI) concentration increased. This observation was taken as being consistant with a surface interaction between the hexavalent chromium and some metastable hydrogen species at the iron surface.  相似文献   

20.
Ku Y  Jung IL 《Water research》2001,35(1):135-142
The reduction of Cr(VI) in aqueous solution by UV/TiO2 reduction process was studied under various solution pH values, TiO2 dosages, light intensities, dissolved oxygen levels and other operating conditions. The reduction rates of Cr(VI) by photocatalytic-induced elections were significantly higher for acidic solutions than those for alkaline solutions. Increasing the light intensity would drastically increase the reduction rate of Cr(VI), but was ultimately influenced by the amount of TiO2 present in solutions. The presence of dissolved oxygen had minimum effect on the reduction of Cr(VI) by UV/TiO2 process in acidic solutions. The presence of ethanol might act as scavenger for holes and promoted the photocatalytic reduction of Cr(VI) by electrons. The Cr(VI) adsorbed on the surface of TiO2 particles was observed to be photoreduced to Cr(III) almost completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号