首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 ± 816 and 13,966 ± 1998 μg L−1, respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m−2 d−1 were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m−2 d−1, the mean concentrations of MTBE and benzene were found to be 550 ± 133 and 65 ± 123 μg L−1 in the effluent of the RF. In the effluent of the PF system, respective mean MTBE and benzene concentrations of 49 ± 77 and 0.5 ± 0.2 μg L−1 were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 μg L−1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (∼100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 ± 10 and 0.6 ± 0.2 μg L−1 in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries.  相似文献   

2.
Liang SH  Kao CM  Kuo YC  Chen KF  Yang BM 《Water research》2011,45(8):2496-2506
Groundwater contamination by gasoline spill is a worldwide environmental problem. Gasoline contains methyl tertiary-butyl ether (MTBE) (a fuel oxygenates) and benzene, which are the chemicals of concerns among the gasoline components. In this study, an in situ chemical oxidation (ISCO) barrier system was developed to evaluate the feasibility of applying this passive system on the control of MTBE and benzene plume in aquifer. The developed ISCO barrier contained oxidant-releasing materials, which could release oxidants (e.g., persulfate) when contact with water for the contaminants’ oxidation in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the component ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S2O82−/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, and thus, cause the decrease in contaminant oxidation rates. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate MTBE, benzene, and other petroleum-hydrocarbon contaminated aquifers. Results from this study will be useful in designing a scale-up system for field application.  相似文献   

3.
Toran L  Lipka C  Baehr A  Reilly T  Baker R 《Water research》2003,37(15):3756-3766
Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline, has been detected in lakes in northwestern New Jersey. This occurrence has been attributed to the use of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE concentrations at Cranberry Lake. During a recent boating season (late April to September 1999), concentrations of MTBE typically exceeded 20 microg/L. MTBE concentrations varied daily from 12 to 24 microg/L over a 2-week period that included the Labor Day holiday. Concentrations were highest on weekends when there is more boat traffic, which had an immediate effect on MTBE mass throughout the lake. MTBE concentrations decreased to about 2 microg/L shortly after the end of the summer recreational season. The loss of MTBE can be accounted for by volatilization, with a half-life on the order of 10 days. The volatilization rate was modeled with the daily decrease in MTBE then the modeled rate was validated using the data from the seasonal decline.  相似文献   

4.
This experimental investigation quantified the sorption uptake of five commonly encountered organic groundwater contaminants, methyl tertiary-butyl-ether (MTBE), benzene, trichloroethylene (TCE), 1,2-dichorobenzene (1,2-DCB), and trinitrotoluene (TNT), to geomembranes made from high density polyethylene (HDPE), polypropylene (PP), and polyvinylchloride (PVC). The organic compounds were chosen to span a range of aqueous solubilities and chemical properties. The geomembranes tested in this study exhibited sorption capacities that were of similar magnitude for each of the contaminants tested, with the exception of 1,2-DCB to HDPE, which exhibited strong uptake in comparison to the other solute/sorbent combinations. In general, the PVC geomembrane demonstrated the highest sorption capacities, while the HDPE geomembrane demonstrated the lowest sorption capacities. Measured partitioning coefficients for the contaminant/geomembrane combinations ranged from Sgf<1 to 160, but most commonly had values between 10 and 75.  相似文献   

5.
Microalgal biofilms have so far received little attention as post-treatment for municipal wastewater treatment plants, with the result that the removal capacity of microalgal biofilms in post-treatment systems is unknown. This study investigates the capacity of microalgal biofilms as a post-treatment step for the effluent of municipal wastewater treatment plants. Microalgal biofilms were grown in flow cells with different nutrient loads under continuous lighting of 230 μmol/m2/s (PAR photons, 400-700 nm). It was found that the maximum uptake capacity of the microalgal biofilm was reached at loading rates of 1.0 g/m2/day nitrogen and 0.13 g/m2/day phosphorus. These maximum uptake capacities were the highest loads at which the target effluent values of 2.2 mg/L nitrogen and 0.15 mg/L phosphorus were still achieved. Microalgal biomass analysis revealed an increasing nitrogen and phosphorus content with increasing loading rates until the maximum uptake capacities. The internal nitrogen to phosphorus ratio decreased from 23:1 to 11:1 when increasing the loading rate. This combination of findings demonstrates that microalgal biofilms can be used for removing both nitrogen and phosphorus from municipal wastewater effluent.  相似文献   

6.
Bi E  Haderlein SB  Schmidt TC 《Water research》2005,39(17):4164-4176
Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.  相似文献   

7.
Long-term investigations were carried out in two pilot-scale horizontal subsurface flow constructed wetlands (planted and unplanted) with an iron-rich soil matrix for treating sulphate-rich groundwater which was contaminated with low concentrations of chlorinated hydrocarbons. The temporal and spatial dynamics of pore-water sulphide, Fe(II) and phosphate concentrations in the wetland beds were characterized and the seasonal effects on sulphide production and nitrification inhibition were evaluated. The results demonstrated that the pore-water sulphide concentrations gradually increased from less than 0.2 mg/L in 2005 to annual average concentrations of 15 mg/L in 2010, while the pore-water Fe(II) concentrations decreased from 35.4 mg/L to 0.3 mg/L. From 2005 to 2010, the phosphate removal efficiency declined from 91% to 10% under a relatively constant inflow concentration of 5 mg/L. The pronounced effect of plants was accompanied by a higher sulphate reduction and ammonium oxidation in the planted bed, as compared to the unplanted control. A high tolerance of plants towards sulphide toxicity was observed, which might be due to the detoxification of sulphide by oxygen released by the roots. However, during the period of 2009-2010, the nitrification was negatively impacted by the sulphide production as the reduction in the removal of ammonium from 75% to 42% (with inflow concentration of 55 mg/L) correlated with the increasing mean annual sulphide concentrations. The effect of the detoxification of sulphide and the immobilization of phosphate by the application of the iron-rich soil matrix in the initial years was proven; however, the life-span of this effect should not only be taken into consideration in further design but also in scientific studies.  相似文献   

8.
H Kawaguchi  Z Li  Y Masuda  K Sato  H Nakagawa 《Water research》2012,46(17):5566-5574
The in situ oil sands production method called steam-assisted gravity drainage (SAGD) reuses process wastewater following treatment. However, the treatment and reuse processes concentrate contaminants in the process water. To determine the concentration and dynamics of inorganic and organic contaminants, makeup water and process water from six process steps were sampled at a facility employing the SAGD process in Alberta, Canada. In the groundwater used for the makeup water, the total dissolved organic carbon (DOC) content was 4 mg/L. This significantly increased to 508 mg/L in the produced water, followed by a gradual increase with successive steps in subsequent water treatments. The concentrations and dynamics of DOC constituents in the process water determined by gas chromatography-mass spectrometry showed that in the produced water, volatile organic compounds (VOCs) such as acetone (33.1 mg/L) and 2-butanone (13.4 mg/L) predominated, and there were significant amounts of phenolic compounds (total 9.8 mg/L) and organic acids including naphthenic acids (NAs) corresponding to the formula CnH2n+ZOX for combinations of n = 4 to 18, Z = 0 and −2, and X = 2 to 4 (53 mg/L) with trace amounts of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and phenanthrene. No organic contaminants, except for saturated fatty acids, were detected in the groundwater. The concentration of DOC in the recycled water was 4.4-fold higher than that in the produced water. Likewise, the total concentrations of phenols and organic acids in the recycled water were 1.7- and 4.5-fold higher than in the produced water, whereas the total concentrations of VOCs and PAHs in the recycled water were reduced by over 80%, suggesting that phenols and organic acids are selectively concentrated in the process water treatment. This comprehensive chemical analysis thus identified organic constituents that were concentrated in the process water and which interfere with subsequent water treatments in the SAGD process.  相似文献   

9.
Zhou XH  Tong Y  Shi HC  Shi HM 《Water research》2011,45(2):953-959
To understand the temporal and spatial toxic effect of heavy metals on the microbial activities of biofilms, microelectrodes were used to measure the inhibitory oxygen (O2) concentration profiles resulted from the effects of zinc (Zn2+) and copper (Cu2+). Using the O2 microprofiles as bases, the spatial distributions of net specific O2 respiration were determined in biofilms with and without treatment of 5 mg/L Zn2+ or 1 mg/L Cu2+. Results show that microbial activities were inhibited only in the outer layer (∼400 μm) of the biofilms and bacteria present in the deeper sections of the biofilms became even more active. The inhibition caused by the heavy metals was evaluated by two methods. One was derived from the oxygen influx at the interface and the other was based on the integral of the oxygen consumption calculated from the entire O2 profile. The two methods yielded significantly different results. We argue that the integral method results in more accurate assessment of toxicity than the surface flux determination.  相似文献   

10.
五大连池市污水处理厂采用CWSBR工艺,其特点是单池连续进、出水且水位恒定,同时采用对泥层扰动小的恒水位滗水器。经过两个多月的污泥培养与系统调试,采用单池多步进水方式,强化了系统脱氮除磷性能,调试稳定后出水COD<50 mg/L、NH4+-N<3 mg/L、TP<0.5mg/L,出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级B标准。运行结果印证了CWSBR工艺具有稳定的脱氮除磷功能。  相似文献   

11.
氧化塘工艺处理规模化养猪场污水   总被引:3,自引:1,他引:2  
采用固液分离太阳能折流式厌氧塘/兼氧塘/强化好氧塘工艺处理养猪场污水,处理出水水质(COD≤400 mg/L、NH2-N≤70 mg/L)达到<畜禽养殖业污染物排放标准>(GB 18596-2001),运行成本为0.34元/m3,净运行成本为0.27元/m3.  相似文献   

12.
We reviewed 47 documents published 1967–2019 that reported measurements of volatile organic compounds (VOCs) on commercial aircraft. We compared the measurements with the air quality standards and guidelines for aircraft cabins and in some cases buildings. Average levels of VOCs for which limits exist were lower than the permissible levels except for benzene with average concentration at 5.9 ± 5.5 μg/m3. Toluene, benzene, ethylbenzene, formaldehyde, acetaldehyde, limonene, nonanal, hexanal, decanal, octanal, acetic acid, acetone, ethanol, butanal, acrolein, isoprene and menthol were the most frequently measured compounds. The concentrations of semi-volatile organic compounds (SVOCs) and other contaminants did not exceed standards and guidelines in buildings except for the average NO2 concentration at 12 ppb. Although the focus was on VOCs, we also retrieved the data on other parameters characterizing cabin environment. Ozone concentration averaged 38 ppb below the upper limit recommended for aircraft. The outdoor air supply rate ranged from 1.7 to 39.5 L/s per person and averaged 6.0 ± 0.8 L/s/p (median 5.8 L/s/p), higher than the minimum level recommended for commercial aircraft. Carbon dioxide concentration averaged 1315 ± 232 ppm, lower than what is permitted in aircraft and close to what is permitted in buildings. Measured temperatures averaged 23.5 ± 0.8°C and were generally within the ranges recommended for avoiding thermal discomfort. Relative humidity averaged 16% ± 5%, lower than what is recommended in buildings.  相似文献   

13.
Waul C  Arvin E  Schmidt JE 《Water research》2008,42(12):3122-3134
A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter response surface methodologies. Response surfaces were found to be statistically significant and thus suitable for estimating the global minimum as well as the 95% parameter uncertainty regions. The linear parameter uncertainty estimates for the half-saturation constant (K(S)) and the maximum growth rate (micro(max)) were: 0相似文献   

14.
The discharge of raw industrial wastewaters, specifically coking wastewater, represents a severe environmental problem. In this work, a phenol‐degrading aerobic strain isolated from a hydrocarbon contaminated site, Achromobacter sp. C‐1, was tested for degrading raw coking wastewater to explore its potential for use in biological treatment. Initially, phenol degradation was reached after 24 h of inoculation in synthetic wastewater [600 mg/L of phenol]. The maximum specific degradation rate was 0.436 h–1 found in the concentration 300 mg/L. In a raw industrial wastewater containing a mixture of phenols as carbon source [phenol 370 mg/L, m‐cresol 100 mg/L and o‐cresol 60 mg/L], 90% biodegradation of a mixture of phenols was achieved after 80 h of inoculation. Following the biodegradation process to remove the colour from the wastewater, polishing was performed by activated carbon adsorption, resulting in a clear wastewater (without colour and contaminants) ready for industrial reuse purposes. These results provided useful information about use of the phenol‐degrading bacteria for bioaugmentation in industrial wastewater treatment improving the quality of final wastewater. The quality of the resulting wastewater was confirmed by mass spectrometry analysis. This work shows the biodegradation process could be a cost‐effective and promising solution for the treatment and reuse of phenolic wastewater.   相似文献   

15.
Biofilms are often more resistant to toxic chemicals such as heavy metals and antimicrobial agents than planktonic cells. Nanosilver has a broad range of applications with strong antimicrobial activity. However, biofilm susceptibility to nanosilver toxicity is not well understood. We studied the bacterial activity in planktonic or biofilm cultures after nanosilver exposure using oxygen quenching fluorescence-based microrespirometry. We also determined the aggregation behavior and the spatial distribution of nanosilver having red fluorescence in biofilms of Escherichia coli expressing green fluorescent protein. At the same bacterial concentrations (3 × 108 CFU/mL), biofilms were about four times more resistant to nanosilver inhibition than planktonic cells. The minimum bactericidal concentrations (MBCs) of nanosilver (size from 15 to 21 nm), defined as the lowest concentration that kills at least 99.9% of a planktonic or biofilm bacterial population, were 38 and 10 mg/L Ag, respectively. For comparison, silver ions were more toxic to E. coli than nanosilver with MBCs of 2.4 and 1.2 mg/L Ag for planktonic and biofilm cultures, respectively. Nanosilver was aggregated in the presence of planktonic or biofilm-forming cells resulting in an increase of average particle size by a factor of 15 and 40, respectively. The nanosilver particles were able to penetrate to approximately 40 μm in a thick biofilm after 1-h exposure. These findings suggested that biofilm resistance to nanosilver could be at least partially due to nanoparticle aggregation and retarded silver ion/particle diffusion.  相似文献   

16.
Degradation of MTBE in dilute aqueous solution by gamma radiolysis   总被引:1,自引:0,他引:1  
Hsieh LL  Lin YL  Wu CH 《Water research》2004,38(16):3627-3633
The radiolytic degradation of methyl tert-butyl ether (MTBE) in air-equilibrated dilute solution was investigated. Complete degradation of MTBE can be achieved within 5 min of irradiation at 59.7 Gy/min. The observed first-order degradation rate constant, called dose constant, increased from 0.04 to 0.56 Gy(-1) as the concentration of MTBE decreased from 92500 to 19 microg/L. Tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were found to be the primary intermediates of the degradation reaction with yields of 47%, 11%, 6.4% and 9.1%, respectively. The degradation of MTBE or its intermediates was also found to depend on the concentrations of benzene and cupric ion. The study shows that the removal of MTBE can be significantly decreased with increasing concentration of benzene. Little affects were observed with the presence of cupric ions, while the degradation of TBF was apparently reduced. These results indicate that gamma radiolysis can be a potentially effective treatment for the removal of MTBE in contaminated water systems.  相似文献   

17.
The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms   总被引:1,自引:0,他引:1  
Jiang G  Gutierrez O  Yuan Z 《Water research》2011,45(12):3735-3743
Several recent studies showed that nitrite dosage to wastewater results in long-lasting reduction of the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. In this study, we revealed that the quick reduction in these activities is due to the biocidal effect of free nitrous acid (FNA), the protonated form of nitrite, on biofilm microorganisms. The microbial viability was assessed after sewer biofilms being exposed to wastewater containing nitrite at concentrations of 0-120 mg-N/L under pH levels of 5-7 for 6-24 h. The viable fraction of microorganisms was found to decrease substantially from approximately 80% prior to the treatment to 5-15% after 6-24 h treatment at FNA levels above 0.2 mg-N/L. The level of the biocidal effect has a much stronger correlation with the FNA concentration, which is well described by an exponential function, than with the nitrite concentration or with the pH level, suggesting that FNA is the actual biocidal agent. An increase of the treatment from 6 to 12 and 24 h resulted in only slight decreases in microbial viability. Physical disrupted biofilm was more susceptible to FNA in comparison with intact biofilms, indicating that the biocidal effect of FNA on biofilms was somewhat reduced by mass transfer limitations. The inability to achieve 2-log killing even in the case of disrupted biofilms suggests that some microorganisms may be more resistant to FNA than others. The recovery of biofilm activities in anaerobic reactors after being exposed to FNA at 0.18 and 0.36 mg-N/L, respectively, resembled the regrowth of residual sulfate-reducing bacteria and methanogens, further confirming the biocidal effects of FNA on microorganisms in biofilms.  相似文献   

18.
Waul C  Arvin E  Schmidt JE 《Water research》2008,42(12):3098-3108
A mathematical model was used to study effects on the degradation of methyl tert-butyl ether (MTBE) in a packed bed reactor due to the presence of contaminants such as ammonium, and the mix of benzene, toluene, ethylbenzene and xylenes (BTEX). It was shown that competition between the slower growing MTBE degraders and the co-contaminant oxidizers prevented MTBE's degradation when oxygen was limited. In this event, the co-contaminant oxidizers out-competed the MTBE degraders in the reactor's biofilm. However, if the oxygen supply was sufficient, MTBE would be fully degraded after the zone where the co-contaminants were oxidized. The results of the model further indicate that contradicting findings in the literature about the effects of BTEX on the degradation of MTBE are mainly due to differences in the study methodologies. Effects such as short-term toxicity of BTEX and the lack of steady-state conditions may also add to contradictions among reports.  相似文献   

19.
The aim of this paper is primarily experimental and is intended to analyse the behaviour of two cementitious materials, before and after heat treatment: one unreinforced (i.e. without fibres) and the other reinforced (with polypropylene fibres).At room temperature and after heating up to 500 °C, the bending strength is improved by the presences of fibres. The residual young modulus is slightly higher for the fibres reinforced samples.As the temperature increases, the strength gain due to fibres inclusion is reduced. Beyond 500 °C, the bending strength is lower for the fibre reinforced cementitious material compared to those without fibres. Fracture energy is also improved for the fibre mortars at room temperature. At 400 °C this improvement decreases gradually with the introduction of polypropylene fibres. Beyond this temperature and due to the introduction of polypropylene fibres, the fracture energy is reduced.Another test is developed: rapid heating due to exposure to a flame. The temperature in the front side reaches in few seconds 1000 °C. At this temperature and after one hour of exposure, the opposite side reached 140 °C. After cooling, the punching shear strength of the fibre mortar is definitely weaker than of the mortar without fibre.  相似文献   

20.
Effects of silver nanoparticles on wastewater biofilms   总被引:1,自引:0,他引:1  
Sheng Z  Liu Y 《Water research》2011,45(18):6039-6050
The goal of this research is to understand the potential antibacterial effect of silver nanoparticles (Ag-NPs) on biological wastewater treatment processes. It was found that original wastewater biofilms are highly tolerant to the Ag-NP treatment. With an application of 200 mg Ag/L Ag-NPs, the reduction of biofilm bacteria measured by heterotrophic plate counts was insignificant after 24 h. After the removal of loosely bound extracellular polymeric substances (EPS), the viability of wastewater biofilms was reduced when treated under the same conditions. By contrast, when treated as planktonic pure culture, bacteria isolated from the wastewater biofilms were highly vulnerable to Ag-NPs. With a similar initial cell density, most bacteria died within 1 h with the application of 1 mg Ag/L Ag-NPs. The results obtained here indicate that EPS and microbial community interactions in the biofilms play important roles in controlling the antimicrobial effects of Ag-NPs. In addition, slow growth rates may enhance the tolerance of certain bacteria to Ag-NPs. The effects of Ag-NPs on the entire microbial community in wastewater biofilms were analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis, PCR-DGGE. The studies showed that the microbial susceptibility to Ag-NPs is different for each microorganism. For instance, Thiotrichales is more sensitive to Ag-NPs than other biofilm bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号