首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were fed diets high in either saturated fat (beef tallow) or α-linolenic acid (linseed oil) or eicosapentaenoic and docosahexaenoic acids (fish oil) with or without 2% cholesterol supplementation. Consumption of linseed oil and fish oil diets for 28 days lowered arachidonic acid content of plasma, liver and heart phospholipids. Addition of 2% cholesterol to diets containing beef tallow or linseed oil lowered 20∶4ω6 levels but failed to reduce 20∶4ω6 levels when fed in combination with fish oil. Feeding ω3 fatty acids lowered plasma cholesterol levels. Addition of 2% cholesterol to the beef tallow or linseed oil diet increased plasma cholesterol concentrations but not when fish oil was fed. Feeding the fish oil diet reduced the cholesterol content of liver, whereas feeding the linseed oil diet did not. Dietary cholesterol supplementation elevated the cholesterol concentration in liver in the order: linseed oil > beef tallow > fish oil (8.6-, 5.5-, 2.6-fold, respectively). Feeding fish oil and cholesterol apparently reduced 20∶4ω6 levels in plasma and tissue lipids. Fish oil accentuates the 20∶4ω6 lowering effect of dietary cholesterol and appears to prevent accumulation of cholesterol in plasma and tissue lipids under a high dietary load of cholesterol.  相似文献   

2.
Male weanling rats were fed semi-synthetic diets high in saturated fat (beef tallow) vs high in linoleic acid (safflower oil) with or without high levels of α-linolenic acid (linseed oil) for a period of 28 days. The effect of feeding these diets on cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding linseed oil with beef tallow or safflower oil had no significant effect on serum levels of cholesterol. Serum cholesterol concentration was higher in animals fed the safflower oil diet than in animals fed the beef tallow diet without linseed oil. Feeding linseed oil lowered the cholesterol content in liver tissue for all dietary treatments tested. Consumption of linseed oil reduced the arachidonic acid content with concomitant increase in linoleic acid in serum and liver lipid fractions only when fed in combination with beef tallow, but not when fed with safflower oil. Similarly, ω3 fatty acids (18∶3ω3, 20∶5ω3, 22∶5ω3, 22∶6ω3) replaced ω6 fatty acids (20∶4ω6, 22∶4ω6) in serum and liver lipid fractions to a greater extent when linseed oil was fed with beef tallow than with safflower oil. The results suggest that the dietary ratio of linoleic acid to saturated fatty acids or of 18∶3ω3 to 18∶2ω6 may be important to determine the cholesterol and arachidonic acid lowering effect of dietary α-linolenic acid.  相似文献   

3.
Comparative effects of feeding dietary linoleic (safflower oil) and α-linolenic (linseed oil) acids on the cholesterol content and fatty acid composition of plasma, liver, heart and epididymal fat pads of rats were examined. Animals fed hydrogenated beef tallow were used as isocaloric controls. Plasma cholesterol concentration was lower and the cholesterol level in liver increased in animals fed the safflower oil diet. Feeding the linseed oil diet was more effective in lowering plasma cholesterol content and did not result in cholesterol accumulation in the liver. The cholesterol concentration in heart and the epididymal fat pad was not affected by the type of dietary fatty acid fed. Arachidonic acid content of plasma lipids was significantly elevated in animals fed the safflower oil diet and remained unchanged by feeding the linseed oil diet, when compared with the isocaloric control animals fed hydrogenated beef tallow. Arachidonic acid content of liver and heart lipids was lower in animals fed diets containing safflower oil or linseed oil. Replacement of 50% of the safflower oil in the diet with linseed oil increased α-linolenic, docosapentaenoic and docosahexaenoic acids in plasma, liver, heart and epididymal fat pad lipids. These results suggest that dietary 18∶2ω6 shifts cholesterol from plasma to liver pools followed by redistribution of 20∶4ω6 from tissue to plasma pools. This redistribution pattern was not apparent when 18∶3ω3 was included in the diet.  相似文献   

4.
Experimental diabetes may manifest itself in a defect in liver microsomal fatty acid desaturation and increased activity of glucose-6-phosphatase (G-6-Pase). The present study was designed to determine whether these changes could be normalized by a change in the dietary fat consumed. Control and streptozotocin-induced diabetic rats were fed nutritionally adequate diets which varied in fatty acid composition. Fatty acid analysis of liver microsomal phospholipids revealed that non-diabetic control animals fed saturated fat (beef tallow) or a diet high in ω3 fatty acids (fish oil) exhibited a significantly higher level of 18∶2ω6 and a lower level of 20∶4ω6 in the phosphatidylcholine and phosphatidylethanolamine fractions compared with diabetic animals. Control and diabetic animals fed the high linoleic acid diet had similar levels of 18∶2ω6 in the microsomal phosphatidylcholine and phosphatidylserine fractions. Microsomal G-6-Pase activity was higher in diabetic than in control animals. Activity of G-6-Pase was lower in microsomes of control animals fed the soybean oil or the fish oil diet, but was not significantly reduced in diabetic animals fed high polyunsaturated fats. Blood glucose levels were similar in control groups fed the different diets, but the plasma hemoglobin A1c level was lower in diabetic animals fed the soybean oil diet. Cholesterol and triglyceride levels were lower in diabetic animals fed the fish oil-based diet. The results suggest that dietary fat manipulation has the potential to change at least some of the abnormalities in the microsomal membrane in experimental diabetes.  相似文献   

5.
Omega-3 fatty acids influence the function of the intestinal brush border membrane. For example, the omega-3 fatty acid eicosapentaenoic acid (20∶5ω3) has an antiabsorptive effect on jejunal uptake of glucose. This study was undertaken to determine whether the effect of feeding α-linolenic acid (18∶3ω3) or EPA plus docosahexaenoic acid (22∶6ω3) on intestinal absorption of nutrients was influenced by the major source of dietary lipid, hydrogenated beef tallow or safflower oil. Thein vitro intestinal uptake of glucose, fatty acids and cholesterol was examined in rats fed isocaloric diets for 2 weeks: beef tallow, beef tallow + linolenic acid, beef tallow + eicosapentaenoic acid/docosahexaenoic acid, safflower oil, safflower oil + linolenic acid, or safflower oil + eicosapentaenic acid/docosahexaenoic acid. Eicosapentaenoic acid/docosahexaenoic acid reduced jejunal uptake of 10 and 20 mM glucose only when fed with beef tallow, and not when fed with safflower oil. Linolenic acid had no effect on glucose uptake, regardless of whether it was fed with beef tallow or safflower oil. The jejunal uptake a long-chain fatty acids (18∶0, 18∶2ω6, 18∶3ω3, 20∶4ω6, 20∶5ω3 and 22∶6ω3) and cholesterol was lower in salfflower oil than with beef tallow. When eicosapentaenoic acid/docosahexaenoic acid was given with beef tallow (but not with safflower oil), there was lower uptake of 18∶0, 20∶5ω3 and cholesterol. The demonstration of the inhibitory effect of linolenic acid or eicosapentaenoic acid/docosahexaenoic acid on cholesterol uptake required the feeding of a saturated fatty acid diet (beef tallow). These changes in uptake were not explained by differences in the animals’ food intake, body weight gain or intestinal weight. Feeding safflower oil was associated with an approximately 25% increase in the jejunal and ileal mucosal surface area, but this increase was prevented by combining linolenic acid or eicosapentaenoic acid/docosahexaenoic acid with safflower oil. Different inhibitory patterns were observed when mixtures of fatty acids were present together in the incubation medium, rather than in the diet: for example, when 18∶0 was in the incubation medium with 20∶4ω6, the uptake of 20∶4ω6 was reduced, whereas the uptake was unaffected by 18∶2ω6 or 20∶5ω3. Thus, (1) the inhibitory effect of eicosapentaenoic acid/docosahexaenoic acid on jejunal uptake of glucose, fatty acids and cholesterol was influenced by the major dietary lipid, saturated (beef tallow) or polyunsaturated fatty acid (safflower oil); and (2) different omega-3 fatty acids (linolenic acid versus eicosapentaenoic acid/docosahexaenoic acid) have a variable influence on the intestinal absorption of nutrients.  相似文献   

6.
Diets rich in meat are claimed to contribute to the high tissue arachidonic acid (20∶4ω6) content in people in Westernized societies, but there are very few direct data to substantiate this assertion. Because meat contains a variety of long-chain polyunsaturated fatty acids (PUFA) that are susceptible to oxidation, we initially examined the effect of cooking on the long-chain PUFA content of beef, and then determined the effect of ingestion of lean beef on the concentration of long-chain PUFA in plasma phospholipids (PL). First, we examined the effect of grilling (5–15 min) and frying (10 min) different cuts of fat-trimmed lean beef on the long-chain PUFA content. Second, we investigated the effect of including 500 g lean beef daily (raw weight) for 4 wk on the fatty acid content and composition of plasma PL in 33 healthy volunteers. This study was part of a larger trial investigating the effect of lean beef on plasma cholesterol levels. In the first two weeks, the subjects ate a very low-fat diet (10% energy) followed by an increase in the dietary fat by 10% each week for the next 2 wk. The added fat consisted of beef fat, or olive oil (as the oil or a margarine) or safflower oil (as the oil or a margarine). This quantity of beef provided 60, 230, 125, 140 and 20 mg/d, respectively, of eicosatrienoic acid (20∶3ω6), 20∶4ω6, eicosapentaenoic acid (20∶5ω3), docosapentaenoic acid (22∶5ω3) and docosahexaenoic acid (22∶6ω3). Grilling for 10–15 min, but not frying, of the fat-trimmed lean beef resulted in 20–30% losses of the 20 and 22 carbon PUFA. The consumption of the lean beef during the first two-week period, when there was a very low level of dietary fat, was associated with significant increases in the proportion and concentration of 20∶3ω6, 20∶4ω6, 20∶5ω3 and 22∶5ω3 in the plasma PL and a significant decrease in the proportion and content of 18∶2ω6. The addition of beef fat or olive oil to the diets containing lean beef did not alter the plasma PL fatty acid profile compared with the very low-fat diet, whereas the addition of safflower oil maintained the significant increases in 20∶4ω6 and 22∶5ω3 but led to decreases in 18∶3ω3 and 20∶5ω3 compared with the very lowfat diet. The results showed that diets rich in lean beef increased the 20∶3ω6, 20∶4ω6 and the long-chain ω3 PUFA levels in the plasma PL. A high level of linoleic acid in diets rich in lean beef prevented the rise in the plasma level of 20∶3ω6 and 20∶5ω3, two fatty acids known to antagonize the effects of 20∶4ω6 on platelet aggregation.  相似文献   

7.
Fatty acid content of marine oil capsules   总被引:2,自引:0,他引:2  
The use of dietary ω3 fatty acid capsules has been associated with a decrease in plasma triglyceride levels. In addition, populations consuming diets rich in fish appear to have a decreased incidence of cardiovascular disease. Eicosapentaenoic acid (EPA, 20∶5ω3) and docosahexaenoic acid (DHA, 22∶6ω3) are major fatty acids in fish oils. It is believed that fish oils exert their biolotic effect through these fatty acids. Many individuals are currently taking fish oil capsules to lower lipids, increase bleeding time, and possibly decrease cardiovascular risk. These capsules also have been classified as food additives with less stringent controls on content. We assessed the fatty acid, cholesterol, and vitamin A and E content of eight commercially available capcules along with cod liver oil. The content of EPA was found to range from 8.7–26.4% (wt%) with a mean of 17.3% (82.4% of labeled content), and that of DHA from 8.9–17.4% with a mean of 11.5% (90.0% of labeled content) as assessed by capillary column gas-liquid chromatography. The mean content of the polyunsaturated ω3 fatty acids was 31.9%, and that of the ω6 fatty acids was 1.4%. The content of saturated fatty acids was 32,0%, and that of monounsaturated fatty acids was 25.1%. Cholesterol content was low, with a range of 0.7–8.3 mg/g, the α-tocopherol range was 0.62–2.24 mg/g, and the range of retinyl esters was 0.4–298.4 μg/g. Cod liver oil had substantially more retinyl esters (2450.1 μg/g) than did fish oil capsules. Our data serve as an independent guide to fish oil capsule fatty acid content upon single lot analysis, and indicate that these capsules contain as much saturated fat as they contain ω3 fatty acids.  相似文献   

8.
Epidemiological and laboratory animal model studies have provided evidence that the effect of dietary fat on colon tumorigenesis depends on the amount of fat and its composition. Because of the importance of the composition of dietary fat and of tissue membrane fatty acid composition in tumor promotion, experiments were designed to investigate the relative effects of high fat diets rich in ω3, ω6 and ω9 fatty acids and colon carcinogen on the phospholipid fatty acid composition of liver, colon, small intestine, erythrocytes and blood plasma. At 6 wk of age, groups of animals were fed diets containing 5% corn oil (LFCO), 23.5% corn oil (HFCO), 23.5% olive oil (HFOO), and 20.5% fish oil plus 3% corn oil (HFFO). Two weeks later all the animals except the vehicle-treated animals received azoxymethanes.c. once weekly for 2 wk at a dose rate of 15 mg/kg body weight. Animals were sacrificed 5 d later and liver, colon, small intestine and erythrocytes and blood plasma were analyzed for phospholipid fatty acids. The results indicate that the phospholipid fatty acid composition of liver, colon and small intestine of HFCO diet fed animals, were not significantly different from those fed the LFCO diet. The levels of palmitoleic acid and linoleic acid were increased in erythrocytes and blood plasma of the animals fed the HFCO diet compared to those fed the LFCO diet. Feeding the HFCO diet significantly increased the oleic acid content and decreased the linoleic acid and arachidonic acid levels in various organs when compared to the HFCO diet. Animals fed the HFFO diet showed a marked increase in eicosapentaenoic acid and docosahexaenoic acid and a decrease in linoleic acid and arachidonic acid levels as compared to those fed the HFCO diet. The results also indicate that carcinogen treatment had only a minimal effect on the phospholipid fatty acid composition.  相似文献   

9.
This study examined the effect on the plasma lipids and plasma phospholipid and cholesteryl ester fatty acids of changing from a typical western diet to a very low fat (VLF) vegetarian diet containing one egg/day. The effect of the addition of saturated, monounsaturated or polyunsaturated fat (PUFA) to the VLF diet was also examined. Three groups of 10 subjects (6 women, 4 men) were fed the VLF diet (10% energy as fat) for two weeks, and then in the next two weeks the dietary fat in each group was increased by 10% energy/week using butter, olive oil or safflower oil. The fat replaced dietary carbohydrate. The VLF diet reduced both the low density lipoprotein (LDL)-and high density lipoprotein (HDL)-cholesterol levels; addition of the monounsaturated fats and PUFA increased the HDL-cholesterol levels, whereas butter increased the cholesterol levels in both the LDL- and HDL-fractions. The VLF diet led to significant reductions in the proportion of linoleic acid (18∶2ω6) and eicosapentaenoic acid (20∶5ω3) and to increases in palmitoleic (16∶1), eicosatrienoic (20∶3ω6) and arachidonic acids (20∶4ω6) in both phospholipids and cholesteryl esters. Addition of butter reversed the changes seen on the VLF diet, with the exception of 16∶1, which remained elevated. Addition of olive oil resulted in a significant rise in the proportion of 18∶1 and significant decreases in all ω3 PUFA except 22∶6 compared with the usual diet. The addition of safflower oil resulted in significant increases in 18∶2 and 20∶4ω6 and significant decreases in 18∶1, 20∶5ω3 and 22∶5ω3. These results indicate that the reduction of saturated fat content of the diet (<6% dietary energy), either by reducing the total fat content of the diet or by exchanging saturated fat with unsaturated fat, reduced the total plasma cholesterol levels by approximately 12% in normocholesterolemic subjects. Although the VLF vegetarian diet reduced both LDL- and HDL-cholesterol levels, the long-term effects of VLF diets are unlikely to be deteterious since populations which habitually consume these diets have low rates of coronary heart disease. The addition of safflower oil or olive oil to a VLF diet produced favorable changes in the lipoprotein lipid profile compared with the addition of butter. The VLF diets and diets rich in butter, olive oil or safflower oil had different effects on the 20 carbon eicosanoid precursor fatty acids in the plasma. This suggests that advice on plasma lipid lowering should also take into account the effect of the diet on the fatty acid profile of the plasma lipids.  相似文献   

10.
World landings of fish and shellfish are approaching 100 million metric tons (MMT) annually. Of this total, around 28% is processed into fish meal and oil. Economic pressures due to poor landings, low prices in traditional markets and high fuel costs have forced the industry to seek new markets and products that can take advantage of the unique properties of fish proteins and oils. Fish meal processing continues to evolve. Fresh raw materials and new, low-temperature processing techniques lead to products with excellent nutritional value. These new, special meals are finding uses in feeding farmed fish, early-weaned pigs, ruminants and pets. Fish oils, whether present as fat in the fish meal or as separated oil, are rich in ω3 fatty acids. When fed to food animals, these ω3 fatty acids deposit in the meat and depot fat. Concepts for poultry with an equivalent amount of ω3 fatty acids to lean fish are being developed. Eggs with a high ω3 fatty acid content and good functionality and flavor are under evaluation. Catfish with shelf-stable flavors and high ω3 fatty acids are also under study. ω3 Fatty acids may affect the immune function of livestock. Future research will evaluate the overall immune function of animals, including resistance to disease, survival under stress and hatchability.  相似文献   

11.
This study was designed to test the hypotheses that digestibility and post-absorption metabolism of fish oil are influenced by impaired lipolysis and by the stereospecific composition of its triacylglycerols. Male Wistar rats were fed nonpurified diets containing one of the following fat sources: 9% native fish oil (NFO), 9% autorandomized fish oil (RFO), 8.1% fish oil-derived free fatty acids (FO-FFA) plus 0.9% glycerol, or 9% soybean oil (SO) as a reference fat. In a 24-day balance study, apparent digestibility of total dietary fat averaged 93.1% in the SO, NFO and RFO groups, and 90.9% in the FO-FFA group. Randomization of fish oil had no effect on apparent digestibility of individual fatty acids. In rats fed FO-FFA, apparent absorption of saturated and monounsaturated fatty acids was lower when compared to the NFO and RFO groups. Feeding the FO-FFA diet tended to increase plasma triglyceride content. The hypocholesterolemic effect of polyunsaturated n−3 fatty acids was not influenced by the dietary source. Similar effects on fatty acid profiles of plasma and liver phospholipids were caused by the NFO, RFO and the FO-FFA diets. We conclude that once polyunsaturated n−3 fatty acids are absorbed, their effect on lipid metabolism is not determined by the dietary source.  相似文献   

12.
The effect of diets high (15%) in saturated (beef tallow) or polyunsaturated (corn or cottonseed oil) fatty acids on the fatty acid composition of sphingomyelin from canine erythrocytes and platelets and sphingomyelin and neutral glycosphingolipids of swine erythrocytes was determined. Sphingolipids of platelets and erythrocytes from animals fed high levels of corn or cottonseed oil exhibited a dramatic alteration in their fatty acid composition, most notable of which was a 50% reduction in nervonic acid (24∶1ω9) as compared to levels observed in control or tallow fed animals. This decrease was compensated for by a quantitatively similar increase in a C24 dienoic acid. The long chain dienoic acid was isolated by silver nitrate thin layer chromatography and determined by analysis of its oxidation products to be Δ15, 18-tetracosadienoic acid (24∶2ω6). When the animals were fed the diets high in polyunsaturates, the 24∶2ω6 represented 13, 20, and 9% of the sphingomyelin fatty acids from canine erythrocytes, platelets, and swine erythrocytes, respectively, and 5% of the neutral glycosphingolipid fatty acids of swine erythrocytes. In contrast, the 24∶2ω6 represented less than 4% of the total cellular sphingolipid fatty acids in animals fed the control or high beef tallow diets. The 24∶1ω9 in the sphingolipids of the animals fed the polyunsaturated diet was roughly equal to that of 24∶2ω6, whereas in the sphingolipids of animals fed the control or saturated fat (beef tallow) diet, the 24∶1ω9 was twice these values. Since sphingomyelin is a membrane component, the increase in unsaturation (24∶2ω6) in its fatty acid moiety induced by dietary polyunsaturates may affect membrane fluidity and may alter membrane properties. Dr. Nelson’s current affiliation is with the Lipid Metabolism Branch, Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute.  相似文献   

13.
The fatty acids recovered from the triglycerides and wax esters of common northwest Atlantic copepods are compared with the fatty acids of wax esters recovered intact from certain fish skin and body lipid, and from commercial fish oils. The fish species, herring, capelin and mackerel, all feed on copepods, and many resemblances of the copepod lipid fatty acids to those of a previous analysis of similar copepods suggest that the basic dietary fat input for these fish may be quite constant. The two copepod fatty acid analyses differed quantitatively in triglyceride 20∶1 and 22∶1 and also in 20∶5ω3 and 22∶6ω3, confirming the primary role of the wax esters in copepods. Selectivity factors are discussed in comparing the copepod wax ester fatty acids with the fatty acids of the wax esters recovered intact from the fish lipids and oils. The basic role of copepods in supplying all types of fatty acids to fish depot fats is considered to be strongly supported by these findings.  相似文献   

14.
Changes in dietary lipid intake are known to alter the fatty acid composition of cardiac muscle of various animals. Because changes in cardiac muscle membrane structure and function may be involved in the pathogenesis of arrythmia and ischemia, we have examined the effects of dietary lipid supplements on the phospholipid distribution and fatty acid composition of rat atria and ventricle following 20 weeks feeding of diets supplemented with either 12% sunflower-seed oil or sheep fat. Neither lipid supplement produced significant changes in the proportions of cholesterol, total phospholipids or phosphatidylcholine, phosphatidylethanolamine or diphosphatidylglycerol,—the phospholipid classes that together account for more than 90% of the total phospholipids of rat cardiac muscle. Significant changes were found in the profiles of the unsaturated fatty acids of all 3 phospholipid components of both atria and ventricle. Although similar, the changes between these tissues were not identical. However, in general, feeding a linoleic acid-rich sunflower seed oil supplement resulted in an increase in the ω-6 family of fatty acids, whereas feeding the relatively linoleic acid-poor sheep fat supplement decreased the level of ω-6 fatty acids but increased the levels of the ω-3 family, resulting in major shifts in the proportions of these families of acids. In particular, the ratio of arachidonic acid: docosahexaenoic acid (20∶4, ω-6/22∶6, ω-3), which is higher in all phospholipids of atria than ventricle, is increased by feeding linoleic acid, primarily by increasing the level of arachidonic acid in the muscle membranes. As dosahexaenoic acid does not occur in the diet, the increase in this acid which occurs after feeding animal fat, presumably arises from increased conversion of the small amounts of linolenic acid in all diets when the amount of linoleic acid present is reduced.  相似文献   

15.
Existence of a dietary maximal level or threshold for incorporation of ω3 fatty acids into membrane phospholipids is of interest as it may further define understanding of the dietary requirement for ω3 fatty acids. To test whether feeding increasing levels of dietary ω3 fatty acids continues to increase membrane ω3 fatty acid content, weanling rats were fed a nutritionally adequate semipurified diet which provided increasing amounts of C20 and C22 ω3 fatty acids, such as 20∶5ω3 and 22∶6ω3. Dietary 20∶5ω3 and 22∶6ω3 were provided by substituting a purified shark oil concentrate of high 22∶6ω3 content for safflower oil high in 18∶2ω6. After four weeks of feeding, nuclear envelopes from four animals in each diet group were prepared, lipid was extracted and phospholipids separated. Arachidonic acid content in membrane phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine was significantly reduced by feeding increased dietary levels of ω3 fatty acids. Decline of 20∶4ω6 level in phospholipid tended to stabilize when the dietary content of total ω3 fatty acids reached 4–5% of total fatty acids. Above this level, dietary ω3 fatty acids did not result in a further decrease in membrane content of 20∶4nω6. Increase in membrane phospholipid content of 20∶5ω3 occurred as the dietary intake of ω3 fatty acids increased from 1.1% to 5% of total fatty acids. A dietary ω3 fatty acid level of 2.2–3% was sufficient to result in maximum incorporation of 22∶6ω3 into membrane phosphatidylcholine and phosphatidylethanolamine, but not into phosphatidylinositol or phosphatidylserine.  相似文献   

16.
Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and51Cr was used to label intracellular molecules. Spontaneous release of51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated ω3 fatty acids) showed an increased level of spontaneous51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the releated51Cr was detected in particles of ∼2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) ω3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that ω3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.  相似文献   

17.
The mechanism by which ω3 fatty acids lower plasma triacylglycerol levels was investigated. Rats were fed fish oil, olive oil (10% fat by weight) or a nonpurified diet 4% fat by weight) for 15 days. Lipoprotein lipase was inhibited by intra-arterial administration of Triton WR 1339 to estimate hepatic triacylglycerol output. Rats fed the olive oil diet showed a higher rate of triacylglycerol formation than rats fed the ω3 fatty acid diet or the low-fat diet. All three groups showed identical rates of removal from plasma of intraarterially administered artificial chylomicrons that had simultaneously been labeled with cholesteryl [1-14C]oleate and [9,10(n)-3H]triolein. Liver radioactivity and total fat content were lowest in rats fed the fish oil diet, indicating that ω3 fatty acids were preferentially metabolized in liver. Chylomicrons obtained from donor rats fed either fish oil containg [14C]cholesterol or olive oil containing [3H]cholesterol were removed at similar rates when infused together intraarterially into recipient animals. A slower formation of plasma very low density lipoprotein triacylglycerols in rats fed fish oil is probably due to a faster rate of oxidation of the fatty acid chains in the liver resulting in decreased plasma triacylglycerol concentrations.  相似文献   

18.
Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acids   总被引:4,自引:13,他引:4  
Lipase hydrolysis was evaluated as a means of selectively enriching long-chain ω3 fatty acids in fish oil. Several lipases were screened for their ability to enrich total ω-3 acids or selectively enrich either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA). The effect of enzyme concentration, degree of hydrolysis, and fatty acid composition of the feed oil was studied. Because the materials that were enriched in long-chain ω3 acids were either partial glycerides or free fatty acids, enzymatic reesterification of these materials to triglycerides by lipase catalysis was also investigated. Hydrolysis of fish oil by eitherCandida rugosa orGeotrichum candidum lipases resulted in an increase in the content of total ω3 acids from about 30% in the feed oil to 45% in the partial glycerides. The lipase fromC. rugosa was effective in selectively enriching either DHA or EPA, resulting in a change of either the DHA/EPA ratio or the EPA/DHA ratio from approximately 1:1 to 5:1. Nonselective reesterification of free fatty acids or partial glycerides that contained ω3 fatty acids could be achieved at high efficiency (approximately 95% triglycerides in the product) by using immobilizedRhizomucor miehei lipase with continuous removal of water.  相似文献   

19.
People with inflammatory bowel disease (IBD) are at risk for developing colorectal cancer, and this risk increases at a rate of 1% per year after 8–10 years of having the disease. Saturated and ω-6 polyunsaturated fatty acids (PUFAs) have been implicated in its causation. Conversely, ω-3 PUFAs may have the potential to confer therapeutic benefit. Since proton magnetic resonance spectroscopy (1H MRS) combined with pattern recognition methods could be a valuable adjunct to histology, the objective of this study was to analyze the potential of 1H MRS in assessing the effect of dietary fatty acids on colonic inflammation. Forty male Sprague-Dawley rats were administered one of the following dietary regimens for 2 weeks: low-fat corn oil (ω-6), high-fat corn oil (ω-6), high-fat flaxseed oil (ω-3) or high-fat beef tallow (saturated fatty acids). Half of the animals were fed 2% carrageenan to induce colonic inflammation similar to IBD. 1H MRS and histology were performed on ex vivo colonic samples, and the 1H MR spectra were analyzed using a statistical classification strategy (SCS). The histological and/or MRS studies revealed that different dietary fatty acids modulate colonic inflammation differently, with high-fat corn oil being the most inflammatory and high-fat flaxseed oil the least inflammatory. 1H MRS is capable of identifying the biochemical changes in the colonic tissue as a result of inflammation, and when combined with SCS, this technique accurately differentiated the inflamed colonic mucosa based on the severity of the inflammation. This indicates that MRS could serve as a valuable adjunct to histology in accurately assessing colonic inflammation. Our data also suggest that both the type and the amount of fatty acids in the diet are critical in modulating IBD.  相似文献   

20.
trans Isometric fatty acids of partially hydrogenated fish oil (PHFO) consist oftrans 20∶1 andtrans 22∶1 in addition to thetrans isomers of 18∶1, which are abundant in hydrogenated vegetable oils, such as in partially hydrogenated soybean oil (PHSBO). The effects of dietarytrans fatty acids in PHFO and PHSBO on the fatty acid composition of milk were studied at 0 (colostrum) and 21 dayspostpartum in sows. The dietary fats were PHFO (28%trans), or PHSBO (36%trans) and lard. Sunflower seed oil (4%) was added to each diet. The fats were fed from three weeks of age throughout the lactation period of Experiment 1. In Experiment 2 PHFO or “fully” hydrogenated fish oil (HFO) (19%trans), in comparison with coconut oil (CF) (0%trans), was fed with two levels of dietary linoleic acid, 1 and 2.7% from conception throughout the lactation period. Feedingtrans-containing fats led to secretion oftrans fatty acids in the milk lipids. Levels oftrans 18∶1 andtrans 20∶1 in milk lipids, as percentages of totalcis+trans 18∶1 andcis+trans 20∶1, respectively, were about 60% of that of the dietary fats, with no significant differences between PHFO and PHSBO. The levels were similar for colostrum and milk. Feeding HFO gave relatively lesstrans 18∶1 andtrans 20∶1 fatty acids in milk lipids than did PHFO and PHSBO. Only low levels ofcis+trans 22∶1 were found in milk lipids. Feedingtrans-containing fat had no consistent effects on the level of polyenoic fatty acids but reduced the level of saturated fatty acids and increased the level ofcis+trans monoenoic fatty acids. Increasing the dietary level of linoleic acid had no effect on the secretion oftrans fatty acids but increased the level of linoleic acid in milk. The overall conclusion was that the effect of dietary fats containingtrans fatty acids on the fat content and the fatty acid composition of colostrum and milk in sows were moderate to minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号