首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the hardness variation of P92 steel during creep in multiaxial stress state, creep experiments of specimens with various notches were conducted under different stresses at 650°C. The hardness and microstructure changes were investigated after creep experiments. The factors related to the hardness of P92 steel notched specimens were discussed. The Kachanov-Robotnov constitutive model for the creep of P92 steel was used to calculate the stress state and damage of P92 steel notched specimens during creep. The results showed that the hardness of P92 steel notched specimens decreased with the decrease of stress level and the increase of multiaxiality. The relationship among hardness, secondary phase precipitates, multiaxiality and damage were discussed.  相似文献   

2.
Creep experiments on both plain and notched specimens were conducted at 650 °C over a stress range of 120–185 MPa. The notch strengthening effect was found to exhibit in notched specimens. By using stress components at the skeletal point, several expressions of representative stress were compared to validate their effectiveness in predicting creep rupture lives of P92 steel under multiaxial stress states. The results showed that Hayhurst representative stress was more suitable for life predictions of P92 steel. In the mean time, the relationship between the fracture ductility and multiaxiality was presented to investigate the influence of the multiaxial stress states on creep rupture behavior of P92 steel. A more reasonable prediction model was proposed, and the validity of the model was verified by experimental data.  相似文献   

3.
The creep mechanical behaviour of P92 steel at 650°C has been studied by experimental research and finite element analysis. During the creep of P92 steel, there existed the notched strengthening effect, which was influenced by the shapes of the notch and the nominal stress. Under the condition of the same notch depth, the creep life enhancement factor increased with decreasing notched radius or the increase of stress. The multiaxial stress caused by the notch effect had a significant influence on the evolution of the microstructure and resulted in a transforming tendency from ductile to brittle at the root of the notch. The fracture position varied with the shapes of the notch: the U shaped notch started to fracture at the root of the notch, while the C shaped notch in the centre of the specimen. The creep process of notched specimens was simulated by embedding Kachanov–Rabotnov creep damage constitutive model into the interface program of finite element software. The result showed that damage distribution of notched specimens varied during the process of creep. The maximum damage location at the end of creep depended on the notch shape: with larger notch radius the maximum damage location was in the centre, while smaller radius of notch specimens was near the notch root, which was consistent with the analysis of the fracture morphology.  相似文献   

4.
Effect of temperature on multiaxial creep behaviour of 304HCu austenitic stainless steel has been investigated. The multiaxiality was introduced by incorporating notches in smooth specimens. Creep rupture life increased with notch acuity ratio having a saturation/decline tendency. Notch strengthening increased with temperature, stress and notch sharpness. Multiaxial ductility decreased rapidly with notch sharpness and tended towards saturation. Fracture mode was found to change from transgranular ductile to intergranular creep depending on the stress, temperature and notch sharpness. Finite element analysis of notched specimens along with orientation imaging microscopic study was carried out to assess the deformation and damage at different normalised stress ratio. A temperature independent unique master plot for multiaxial rupture life as a function of stress has been established.  相似文献   

5.
Creep tests were performed on P92 steel specimens with notches of three different sizes at 650 °C. The results showed that the specimens switched from exhibiting ductility to showing brittleness at their center and at the notch root under multiaxial stress, but to varying degrees. This transformation was accompanied by a decrease in the reduction in area as well as in the number of dimples in the sample cross-section. The multiaxiality had a marked impact on the precipitation of the secondary phase, with its value determining the extent of precipitation of the secondary phase at the center and the root of the notch during creep. Using finite element analysis, an elastic-plastic creep damage model is embedded into the interface program and the creep behavior of the notched specimens was simulated. The results showed that plastic deformation at the notch root can accelerate specimen damage.  相似文献   

6.
Finite‐element predictions of creep rupture in notched specimens are presented in this work. A damage model linked to the creep strain rate and stress triaxiality has been used to predict creep life under multiaxial stress conditions and the predictions have been compared with experimental data for a C–Mn steel. Finite‐element analyses have been conducted using primary–secondary (PS) and primary–secondary–tertiary (PST) creep laws. As expected a PST analysis gives a shorter predicted rupture life than a PS analysis. An additional term was included in the model to allow for an increase in hydrostatic strain due to creep damage. The incorporation of this term improved the agreement between the experimental data and the finite‐element predictions. A further enhancement to the model was to model the initiation and growth of a sharp crack in the vicinity of the notch, through the use of a nodal release technique linked to the damage evolution. It was found that the predictions obtained using the nodal release technique were very similar to those from the PST creep model incorporating the hydrostatic damage term. The effect of mesh size has also been examined and the finite‐element predictions were seen to be quite mesh sensitive with a finer mesh generally giving a shorter predicted life.  相似文献   

7.
The creep rupture life of U-type notched specimens and smooth specimens has been calculated based on the ductility exhaustion damage model using stress-dependent creep ductility. Effects of creep ductility and notch constraint on creep fracture behaviour in notched bar specimens have been investigated. The results show that the U-type notch exhibits notch strengthening effect under a wide range of stress level and notch constraint condition (notch acuity) for creep ductile materials. The lower equivalent stress in notched specimens plays main role for reducing creep damage and increasing rupture life. The rupture life of notched specimens of creep brittle materials (with lower creep ductility) decreases with the increase in stress level and notch constraint. With increasing creep ductility and decreasing notch constraint, the degree of the notch strengthening effect increases. In creep life designs and assessments of high-temperature components containing notches, the material creep ductility, notch constraint and stress levels need to be fully considered.  相似文献   

8.
An innovative numerical methodology is presented for fatigue lifetime estimation of notched bodies experiencing multiaxial cyclic loadings. In the presented methodology, an evaluation approach of the local nonproportionality factor F for notched specimens, which defines F as the ratio of the pseudoshear strain range at 45° to the maximum shear plane and the maximum shear strain range, is proposed and discussed deeply. The proposed evaluation method is incorporated into the material cyclic stress‐strain equation for purpose of describing the nonproportional hardening behavior for some material. The comparison between multiaxial elastic‐plastic finite element analysis (FEA) and experimentally measured strains for S460N steel notched specimens shows that the proposed nonproportionality factor estimation method is effective. Subsequently, the notch stresses and strains calculated utilizing multiaxial elastic‐plastic FEA are used as input data to the critical plane‐based fatigue life prediction methodology. The prediction results are satisfactory for the 7050‐T7451 aluminum alloy and GH4169 superalloy notched specimens under multiaxial cyclic loading.  相似文献   

9.
The high-temperature rupture behavior of the 5083-Al alloy was tested to failure at 548 K under multiaxial stress states of uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress states with respect to the maximum principal stress, the von-Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses show a good correlation for the investigated material. The success with two parameters implies that the creep rupture of the 5083-Al alloy is dominated by grain boundary cavitation that is constrained by the creep deformation of the surroundings. The experimental results reveal that the creep rupture of this alloy under the testing condition in the present study is controlled by cavitation coupled with the highly localized deformation process such as grain boundary sliding. The failure-mechanism control parameter for the notched triaxial tension specimens confirms that the effective stress primarily controls the rupture of the uniaxial and triaxial tension specimens. A theoretical prediction based on constrained cavity growth and continuous nucleation was found to be in agreement with the experimental rupture data within a factor of three.  相似文献   

10.
Abstract

The notched strengthening effect during creep of P92 steel has been studied by finite element analysis and experimental research. It was found that there was a transforming tendency from ductile to brittle at the root of the notch and the extent of the transforming intensified with the increment of the nominal stress. It was the transforming tendency that increased the value of creep life enhancement factor. With the help of finite element software, Kachanov–Rabotnov creep damage constitutive model was embedded into the interface program and the notched specimens creep was simulated. The result has shown the Kachanov–Rabotnov model can be used to simulate the notched strengthening effect of P92 steel accurately when the material constant α?=?0·73.  相似文献   

11.
The relationship between the growth of the micromechanisms of creep rupture and the phenomenological theories used by engineers is discussed. It is shown how a theory of continuum damage mechanics can be developed which relates component performance to material properties. The appropriate material property is the reference rupture stress while the isochronous rupture surface provides the necessary information about material behavior when subjected to multiaxial states of stress.  相似文献   

12.
For circumferentially notched, round tensile bars the creep rupture behaviour is analysed, based on constitutive relations that account for the nucleation and growth of grain boundary cavities in polycrystalline metals at high temperatures. Both diffusive cavity growth and growth by dislocation creep of the surrounding grains is incorporated in the model, and in some cases free grain boundary sliding is assumed. Failure by cavity coalescence is predicted at small overall strains in the range where cavity growth is constrained by the rate of dislocation creep of the grains, whereas outside this range large occur prior to failure.In the analyses for notched specimens, where the stress fields are strongly non-uniform, first failure occurs at the notch tip, and subsequently a macroscopic crack grows into the material. Various combinations of material parameters are considered, and in most cases the crack is found to grow in the plane of the notch. The results are related to earlier experimental and computational investigations of creep rupture in notched bars.  相似文献   

13.
The application of stress intensity factors derived from linear elastic fracture mechanics (LEFM) to fracture at creep temperatures has been considered. From tensile creep rupture tests on single edge notched and notched centre hole specimens of solution treated A.I.S.I. type 316 stainless steel, it is shown that a LEFM approach is inapplicable to predicting creep crack growth rates, whilst the net section stress is found to correlate well with the crack growth rates. These observations have been explained by considering the creep relaxation that takes place at the notch root, smoothing out the local stresses and thus making the LEFM stress distribution inapplicable. The resulting stress distribution supports the observation that the net section stress is a successful criterion on which to predict creep rupture in stainless steel. The limitations as a fracture mechanics method are explored and it is found that a criterion based on the amount of creep rather than stress would have advantages in some respects. In this context the “crack opening displacement” and the “fracture angle” criteria are considered and their use is found to hinge upon the development of suitable methods for relating the local displacement to the applied stress.  相似文献   

14.
In the present investigation, the effect of notch on creep rupture behavior and creep rupture life of a Ni‐based superalloy has been assessed by performing creep tests on smooth and U‐notched plate specimen under 0°C. The finite element analysis coupled with continuum damage mechanics are carried out to understand the stress distribution across the notch throat and the creep damage evolution under multi‐axial stress state. The creep rupture life of U‐notched specimen is much larger than that of plane plate specimen under the same stress condition, indicating that there is a strengthening effect on notch specimen. Creep rupture life increases with increasing the notch radius, the smaller notch radius can induce the creep rupture easier. The effect of notch on the creep damage is also studied. It is found that the location of the maximum creep damage and the maximum equivalent creep strain initiates first at the notch root and gradually moves to the inside as the notch radius increases.  相似文献   

15.
Notched tubular components of a ferritic oxide-dispersion-strengthened material, MA 956, were subjected to multiaxial creep loading at 1100°C by applying a constant internal pressure. The components proved to be extremely insensitive to circumferential notches of up to 80 percent of the wall thickness due to the high axial creep rupture strength of this material. However, the components were sensitive to both externally and internally axially aligned notches, and displayed similar stress rupture behaviour but consistently longer rupture lives than plane components at the same ligament stress level. Failure was found to be due to strain controlled cavitation in the ligament rather than as a consequence of creep crack growth from the notch. A direct current/potential drop method was shown to provide a reasonable indication of the development of cavitation in these tests. It is shown that the low ductility failure of notched MA 956 components is best described by a creep fracture mechanism rather than by fracture mechanics.  相似文献   

16.
This paper describes the creep behaviour of plain, notched and welded specimens machined from Inco718 sheet material. The Inco718 welded sheets experience out of plane distortion due to the welding process and these sheets also have weld beads with sharp fillet radii. Both the out of plane distortion and the fillet radii result in high stress concentrations and local plastic deformations which can significantly affect the failure life of the sheets, at high temperature, under creep conditions. Experimental creep testing using plain, notched and welded specimens was carried out at 620 °C. From the test data, the plasticity behaviour and the creep and damage constitutive equations were obtained for the material. On this basis, failure predictions of the welded sheets, based on continuum damage mechanics modelling, were conducted, using the finite element method. The results obtained are compared with the corresponding experimental data and the applicability of the method for predicting failure lives is discussed.  相似文献   

17.
Abstract

Short and long term trends in creep crack growth (CCG) rate data over test times of 500–30?000 h are available for Austenitic Type 316H stainless steel at 550°C using compact tension, C(T), specimens. The relationship between CCG rate and its dependence on creep ductility, strain rate and plastic strain levels has been examined. Uniaxial creep data from a number of batches of 316H stainless steel, over the temperature range 550–750°C, have been collected and analysed. Power-law correlations have been determined between the creep ductility, creep rupture times and average creep strain rate data with stress σ normalised by flow stress σ0·2 over the range 0·2<σ/σ0·2<3 for uniaxial creep tests times between 100 and 100?000 h. Creep ductility exhibits upper shelf and lower shelf values which are joined by a stress dependent transition region. The creep strain rate and creep rupture exponents have been correlated with stress using a two-stage power-law fit over the stress range 0·2<σ/σ0·2<3 for temperatures between 550 and 750°C, where it is known that power-law creep dominates. For temperature and stress ranges where no data are currently available, the data trend lines have been extrapolated to provide predictions over the full stress range. A stress dependent creep ductility and strain rate model has been implemented in a ductility exhaustion constraint based damage model using finite element (FE) analysis to predict CCG rates in 316H stainless steel at 550°C. The predicted CCG results are compared to analytical constant creep ductility CCG models (termed NSW models), assuming both plane stress and plane strain conditions, and validated against long and short term CCG test data at 550°C. Good agreement has been found between the FE predicted CCG trends and the available experimental data over a wide stress range although it has been shown that upper-bound NSW plane strain predictions for long term tests are overly conservative.  相似文献   

18.
19.
In this paper creep crack growth behaviour of P92 welds at 923 K are presented. Creep crack growth behaviour for P92 welds are discussed with C* parameter. Creep crack growth behaviour of P92 welds has been compared with that of P91 welds with C* parameter. NSW and NSW-MOD model were compared with the experimental creep crack growth data. Plane strain NSW model significantly overestimates the crack growth rate, and plane stress NSW model underestimates it. Whilst, NSW-MOD model for plane stress and plane strain conditions gives lower and upper bound of the experimental data, respectively.FE analysis of creep crack growth has been conducted. Constrain effect for welded joints has been examined with C* line integrals of C(T) specimens. As a result, constant C* value using the material data of welded joint gives 10 times lower than that of only HAZ property. Whilst, the predicted CCG rates for welded joint are 10 times higher than those for only HAZ properties. Compared with predicted CCG rate from FE analysis and the experimental CCG rate, it can be suggested that creep crack growth tests for lower load level or for large specimen should be conducted, otherwise the experimental data should give unconservative estimation for components operated in long years.  相似文献   

20.
The multiaxial creep ductility of austenitic stainless steels   总被引:1,自引:0,他引:1  
Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In practice, calculations of creep damage are further complicated by the presence of multiaxial states of stress. In the case of the time fraction approach, there are a number of models that can be used to predict the effect of state of stress on creep rupture strength. In particular, Huddleston developed a model from data on stainless steels. The R5 procedure uses a ductility exhaustion approach to calculate creep damage and includes a model for use under triaxial states of stress. The aim of this paper is to describe the development of this model, which is based on considerations of cavity nucleation and growth and was developed from multiaxial creep data on Type 304 and 316 steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号