首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Shallow groundwater is the main source for drinking water in Kabul. It comes from a multitude of shallow handpumped wells spread over the whole city area. The groundwater is characterised by slightly oxic redox conditions. Interactions with aquifer carbonates lead to high degrees of hardness and near-neutral pH. The mostly negative water budget of the Kabul basin results in strong evaporation which leads to an increase in salt content and some undesirable constituents, including borate. Several years of drought have aggravated this problem. The shallow groundwater in the city has received tremendous amounts of pollutants due to a lack of proper waste and wastewater disposal. Common indicators are elevated concentrations of nutrients such as nitrate and faecal bacteria. The high infant mortality can at least partially be attributed to insufficient water hygiene. Acid generated during the mineralization of the waste water is hidden due to the strong pH buffering capacity. Redox and pH conditions preclude significant mobilisation of trace metals and metalloids.  相似文献   

2.
Although nitrate is recognized as the most common groundwater contaminant due to growing anthropogenic sources, such as agriculture in particular, its adverse effects on human and animal health are debatable. The current issue, however, is to control and reduce nitrate contamination with regards to the long residence time of groundwater within aquifers. Denitrification has recently been recognized for its ability to reduce high nitrate concentrations in groundwater. The Kakamigahara groundwater basin, Gifu prefecture, Japan, witnessed rising levels of nitrate (>12 mg/l NO(3)-N) originating from agricultural sources. Chemical analyses for the determination of major constituents of groundwater and delta(15)N of residual nitrate were performed on representative groundwater samples in order to fulfill two main objectives. One is to investigate the current situation of nitrate groundwater pollution. The second objective is to determine whether the denitrification is a potential natural mechanism, which eliminates nitrate pollution in the Kakamigahara aquifer. Agricultural nitrate contamination of groundwater was obvious from characteristically high concentrations of Ca(2+), Mg(2+), NO(3)(-) and SO(4)(2-). High nitrate concentrations were found on the eastern side of the basin in association with vegetable cultivation fields, and decreased gradually towards the west of the basin along the direction of groundwater flow. The decrease of nitrate concentration was conveniently coupled with increase of HCO(3)(-) (the heterotrophic denitrification product), pH and delta(15)N of residual nitrate (due to isotopic fractionation) from east to west. Therefore, denitrification in situ is continuously removing nitrate from the Kakamigahara groundwater system.  相似文献   

3.
《Urban Water Journal》2013,10(6):434-446
Untreated sewage can contribute a significant proportion of urban groundwater recharge, via on-site sanitation facilities and sewer exfiltration. In the West Bank of the Palestinian Territories 94% of sewage is discharged untreated to the ground or surface waters. This has contributed to increasing nitrate concentrations in groundwater, which is the critical water source. In this case study of a drainage catchment from the city of Nablus, a water balance indicates that sewage as a source of groundwater recharge is as much as 50% of total recharge from precipitation, and nitrogen pollutant loads by area are up to 60% as much as those from agriculture. Results suggest that 22% of total wastewater flow directly infiltrates the ground via cesspits and sewer exfiltration.  相似文献   

4.
This paper, describes nitrate concentrations in a groundwater catchment currently designated as a nitrate-sensitive area. Although the scheme has been operational for two years, groundwater nitrate concentrations have regularly exceeded the EC maximum admissible concentration of 11.3 mg/1 NO3-N (50 mg/1 NO3) from sources draining both arable and grassland management regimes. Nitrate levels from arable areas tend to produce a seasonal pattern of winter leaching and summer uptake, whilst no such pattern or fluctuation is observed from grassland areas. Four processes are defined which regulate nitrate inputs to the saturated zone of the Great Oolite aquifer: (i) availability of 'free'nitrogen, (ii) variations in nitrogen uptake, (iii) leaching of nitrates from the soil environment, and (iv) limited atttenuation within the unsaturated zone.  相似文献   

5.
This study analyses the sources of atrazine contamination in the Brusselian sandy aquifer of central Belgium. Atrazine has in the past been used for both agricultural and non-agricultural applications, but it is difficult to distinguish the contamination originating from these two sources. The spatial and temporal covariance of atrazine concentrations was studied by fitting semi-variogram models to monitoring data. Correlation ranges were found to be 600 m and 600-700 days, respectively. The results were used to apply a declustering algorithm before examining the distribution of atrazine concentrations measured in groundwater. Monitoring data appeared to follow a pseudo-lognormal distribution, as a lognormality test was negative. An inflexion point on the cumulative density function was thought to indicate the two different pollution processes, i.e., agricultural and non-agricultural contamination sources. A non-parametric one-way analysis of variance suggested that the vast majority of atrazine in groundwater was from non-agricultural, point sources. This was supported by the strong relationship between mean concentrations and land use, whilst other environmental variables, such as soil organic matter or groundwater depth, produced less meaningful results.  相似文献   

6.
The aquifer ??Halterner Sande?? in North Rhine-Westphalia (Germany) is intensively used for water supply. The area is also intensely agricultural with high nitrogen loads causing nitrate concentrations to very often exceed the critical value of 50?mg/l in the shallow groundwater which may cause transport of nitrogen into receiving waters. In this study, vertical transport of nitrate was monitored in three multi-level sampling devices to analyse the reactions in the groundwater. In addition, nine column experiments were performed to investigate the reduction potential of nitrate in sediments. The hydrochemical results presented here show decreased nitrate concentrations with greater depth in the multi-level sampling devices with possible redox reactions. These studies found variable nitrate reduction potentials, however they demonstrate the need to decrease nitrogen inputs into the aquifer.  相似文献   

7.
The status of nitrate (NO(3)(-)), nitrite (NO(2)(-)) and ammonium (NH(4)(+)) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate delta(15)N and delta(18)O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO(3)(-)-delta(15)N along with the NO(3)(-) reduction and clear delta(18)O/delta(15)N slopes of NO(3)(-) ( approximately 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO(3)(-) contamination via active denitrification and reduced nitrification. Our results showed that NO(3)(-) and NH(4)(+) contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.  相似文献   

8.
The spatial and temporal patterns of in-stream nitrate concentrations for the upper Thames and selected tributaries are described in relation to point and diffuse sources for these rural catchments. The rivers associated with catchments dominated by permeable (Cretaceous Chalk) bedrock show a smaller range in nitrate concentrations than those associated with clay and mixed sedimentary bedrock of lower permeability. The differences reflect the contrasting nature of water storage within the catchments and the influence of point and diffuse sources of nitrate. Nitrate concentrations often increase in a gradual way as a function of flow for the rivers draining the permeable catchments, although there is usually a minor dip in nitrate concentrations at low to intermediate flow due to (1) within-river uptake of nitrate during the spring and the summer when biological activity is particularly high and (2) a seasonal fall in the water table and a change in preferential flow-pathway in the Chalk. There is also a decrease in the average nitrate concentration downstream for the Kennet where average concentrations decrease from around 35 to 25 mg NO(3) l(-1). For the lower permeability catchments, when point source inputs are not of major significance, nitrate concentrations in the rivers increase strongly with increasing flow and level off and in some cases then decline at higher flows. When point source inputs are important, the initial increase in nitrate concentrations do not always occur and there can even be an initial dilution, since the dilution of point sources of nitrate will be lowest under low-flow conditions. For the only two tributaries of the Thames which we have monitored for over 5 years (the Pang and the Kennet), nitrate concentrations have increased over time. For the main stem of the Thames, which was also monitored for over 5 years, there is no clear increase over time. As the Pang and the Kennet river water is mainly supplied from the Chalk, the increasing nitrate concentrations over time clearly reflect increasing nitrate concentrations within the groundwater. It primarily reflects long-term trends for agricultural fertilizer inputs and significant aquifer storage and long water residence times. The results are discussed in terms of hydrogeochemical processes and the Water Framework Directive and are compared with data from other eastern UK rivers. The importance of diffuse sources of nitrate contamination is highlighted. On a flow weighted basis, the average diffuse component of nitrate is around 95% for the Thames Basin rivers draining Chalk and for the corresponding rivers draining less permeable strata, there is a more significant but not major point source component (at least in terms of flux); the average diffuse component is 79% in this case. These data fit well with earlier assessments of agricultural sources to UK surface waters. Under baseflow conditions the diffuse sources remain dominant for the Chalk fed Thames Basin rivers, but point sources can be dominant for the low permeability cases. On a proportionate basis, the Thames Basin rivers are similar to the rural rivers of the Tweed and Humber Basins in terms of percentage diffuse components although the lower intensity agriculture occurring for the rivers monitored means that the average nitrate concentrations are lower for the rural rivers of central and northern England and the borders with Scotland: the Humber and Tweed.  相似文献   

9.
《Urban Water》2001,3(3):185-192
Groundwater is of major importance in providing municipal water-supply and for private domestic and industrial use in many urban centres. The subsurface has also come to serve as the receptor for much urban and industrial wastewater and for solid waste disposal, especially in the developing world. In result, there are rather widespread indications of degradation of the groundwater resource-base caused by excessive exploitation and/or inadequate pollution control. This paper is based primarily on the detailed investigation of six cities in Latin America and Asia. Fuller details are to be found in a related World Bank publication entitled `Groundwater in Urban Development' (Foster, Lawrence, & Morris, 1998). The objective of the present paper is to raise awareness of the interdependence of groundwater and urbanisation among urban policy-makers and to provide a framework for systematic consideration of groundwater in urban management.  相似文献   

10.
Seven years of monitoring groundwater in the Gaza Strip has shown that nitrate was and still is a major groundwater pollutant. The objectives of this research were to study the distribution of NO(3)(-) in the groundwater of the Gaza Strip and to identify the sources of NO(3)(-) in the Gaza aquifer system by assessing nitrogen and oxygen isotopes. The most recent samples collected in 2007 showed 90% of the wells having NO(3)(-) concentrations that are several times higher than the WHO standards of 50 mg/L. Potential NO(3)(-) source materials in Gaza are animal manure N, synthetic NH(4) based fertilizers, and wastewater/sludge. The average concentrations of N in the sludge, manure and soil of Gaza were 2.9%, 1% and 0.08%, respectively. The range in delta(15)N of solid manure samples was +7.5 to +11.9 per thousand. The range in delta(15)N of sludge samples was +4.6 to +7.4 per thousand, while four brands of synthetic fertilizers commonly used in Gaza had delta(15)N ranging from +0.2 to +1.0 per thousand. Sludge amended soil had delta(15)N ranging from +2.0 to +7.3 per thousand. For both delta(18)O and delta(15)N, the ranges of groundwater NO(3)(-) were -0.1 to +9.3 per thousand and +3.2 to 12.8 per thousand, respectively. No significant bacterial denitrification is taking place in the Gaza Strip aquifer. Nitrate was predominantly derived from manure and, provided delta(15)N of sludge represents the maximum delta(15)N of human waste, to a lesser extent from septic effluents/sludge. Synthetic fertilizers were a minor source.  相似文献   

11.
Integrated understanding of urban land, groundwater (shallow and deep), baseflow and surface-water quality relationships is required for effective urban water-quality management. Chemical quality data from across these media have been collected for the Birmingham (UK) aquifer—River Tame conurbation to assess chemical transport from contaminated land to groundwater to baseflow to surface water. Although metals concentrations were high in soils, low leachability and attenuation caused concentrations in groundwaters and baseflow discharging to surface water to be generally low with only sporadic elevated concentrations attributed to localised point sources. Hydrocarbon VOCs (volatile organic compounds) were similarly absent or at low concentration attributable to their ready natural attenuation. Chlorinated VOCs, however, were widely encountered in groundwater, discharging as baseflow to surface water and impacting surface-water quality. This is attributed to their DNAPL (dense nonaqueous-phase liquid) properties and relative recalcitrance although there was some evidence of biodegradation, albeit insufficient to protect surface water and groundwater abstraction receptors. Some inorganic trends were evident across the various media; nitrate was the most significant quality concern. Generic conclusions are drawn on urban water-quality management and the need for risk-based management strategies to optimise use of urban, sporadically contaminated groundwater in conjunction with surface water highlighted.  相似文献   

12.
Integrated understanding of urban land, groundwater (shallow and deep), baseflow and surface-water quality relationships is required for effective urban water-quality management. Chemical quality data from across these media have been collected for the Birmingham (UK) aquifer--River Tame conurbation to assess chemical transport from contaminated land to groundwater to baseflow to surface water. Although metals concentrations were high in soils, low leachability and attenuation caused concentrations in groundwaters and baseflow discharging to surface water to be generally low with only sporadic elevated concentrations attributed to localised point sources. Hydrocarbon VOCs (volatile organic compounds) were similarly absent or at low concentration attributable to their ready natural attenuation. Chlorinated VOCs, however, were widely encountered in groundwater, discharging as baseflow to surface water and impacting surface-water quality. This is attributed to their DNAPL (dense nonaqueous-phase liquid) properties and relative recalcitrance although there was some evidence of biodegradation, albeit insufficient to protect surface water and groundwater abstraction receptors. Some inorganic trends were evident across the various media; nitrate was the most significant quality concern. Generic conclusions are drawn on urban water-quality management and the need for risk-based management strategies to optimise use of urban, sporadically contaminated groundwater in conjunction with surface water highlighted.  相似文献   

13.
Colloids are ubiquitous in aquatic systems and are suspected of facilitating contaminant transport. At sites where the disposed waste is in direct contact with ground water, two main prerequisites for colloidal transport are fulfilled: these two prerequisites are a high concentration of colloids and many different contaminants, some that are very unlikely to be transported in an aqueous solution. In our investigation, three landfill sites with different historical background and hydrogeological conditions were examined. The colloids upstream, downstream, and inside the waste disposal sites were characterized with respect to their size distribution and chemical composition. The particle concentration upgradient and downgradient of the sites were 2-23 and 8-80 mg/L, respectively. Inside the waste disposal sites the particle concentration was 160-870 mg/L. The particles upgradient reflected the mineral composition of the aquifer, with calcareous colloids and silicates dominating the composition. Downgradient of the sites, we saw an increase of iron-precipitates and salt colloids, together with organic colloids. However, the downgradient colloids were significantly different from the colloids and particles inside of the disposal sites with respect to their size and chemical composition. Colloids inside the disposal sites reflected the waste composition and degradation. The association of heavy metal ions to colloids and particles showed a surprisingly high fraction of dissolved metal ions. We determined that the lowest metal ion concentrations (less than 20% of the total concentration) were associated with the colloid size class between 10 nm and 1 microm, which is considered most mobile in porous systems. The association of Fe and Mn to colloids was dominated by the redox conditions inside the disposal sites, where there was a reducing environment, Fe and Mn were dissolved. Outside the disposal sites, where there was an oxidizing environment, these metals formed colloids and particles >1 microm. Together with these particles, As was precipitating. For other metal ions (Cd, Co, Cu, Ni, Pb, Zn), we determined an association to colloids coinciding roughly with the colloid size distribution. The results suggest that the change of hydrochemical conditions at the interface, from a reducing, high ionic strength environment inside of the disposal sites to an oxidizing, low ionic strength environment in the groundwater together with physical filtration effects for the larger particles, is an effective chemical barrier for colloids. Field observations suggest, that the colloids form a rather persistent coating around the aquifer matrix that reduces the hydraulic conductivity and enhances the sorption capacity of the aquifer close to the waste disposal sites. In every case, there was an increase of the contaminant concentrations downstream of the waste disposal sites, but the increase was less than expected from the initial transport calculations, which were under the assumption that there was a direct contact between the waste disposal site and the groundwater. It seems more than likely, that under the given conditions, colloids are contributing to a self sealing layer at the landfill bottom. The results of this study are relevant for the assessment of many landfills without appropriate landfill sealing systems.  相似文献   

14.
A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management unit in the Seine river basin.  相似文献   

15.
D. N. Lerner  MA  MSc  PhD  FREng  FICE  FGS  CEng  CGeol 《Water and Environment Journal》2003,17(4):239-244
Urban areas can impose significant loads of nitrogen, as ammonium or nitrate, onto the underlying groundwater. There are many sources of nitrogen pollution, including diffuse sources (parks and gardens), intense point sources (industrial chemical spills), and multi-point sources (leaking sewers). Data on the loadings associated with the various sources are scarce, although an estimate of the overall load is available for Nottingham. For other cities, a total load could be estimated by factoring the Nottingham result, or by considering each component of the load separately. Both approaches are described, and the integrated method is recommended for its simplicity.  相似文献   

16.
食物垃圾处理器是装在厨房水盆排水口下面的一种机械粉碎小装置,可将食物垃圾粉碎成粒径不大于5mm的颗粒后直接冲入排水系统。食物垃圾处理器的应用实现了生活垃圾在家庭中的源头分流,使城市生活垃圾中的部分食物垃圾从城市垃圾处理系统分离出来,进入城市排水系统。文章通过开展调研及实验分析,研究了在上海推广使用食物垃圾处理器带来的收益和可能出现的问题,评估了食物垃圾处理器的使用对上海市垃圾处理系统及污水处理系统的影响。  相似文献   

17.
高放废物地质处置及其若干关键科学问题   总被引:12,自引:8,他引:12  
如何安全处置高水平放射性废物是科学、技术和工程界所面临的挑战性问题。在介绍国内外最新研究进展的基础上,重点讨论高放废物地质处置的若干关键科学问题:处置库场址地质演化的精确预测、深部地质环境特征、多场耦合条件下(中(高)温、地壳应力、水力作用、化学作用、生物作用和辐射作用等)深部岩体、地下水和工程材料的行为、低浓度超铀放射性核素的地球化学行为与随地下水迁移行为及处置系统的安全评价。同时,介绍了国外若干重大科研项目和若干研究热点问题。  相似文献   

18.
废弃菜叶处理(破碎+厌氧产沼气)过程中产生的废水是一种污染物浓度较高、C/N偏低的废水。云南某废弃菜叶处理厂废水处理工程采用A2O2(二级O池为MBR膜池)工艺,以强化氮的脱除,保证出水TN的达标。对A2O2工艺的启动特性、运行效果及运行费用组成进行了分析。在工艺启动过程中,COD的去除效率可以稳定在70%以上;当硝化反应发生后,对NH4+-N的去除率>99.5%;投加一定量的碳源后,对TN可以达到较高的去除率。稳定运行后,出水的COD、NH4+-N、TN和TP分别稳定在300、10、45、5 mg/L以下,满足《污水排入城镇下水道水质标准》(GB/T 31962—2015)的C级标准。经测算,处理成本为27.564元/m3。  相似文献   

19.
The qualitative and quantitative impact of a city on groundwater is presented in the case study of Darmstadt. The impact of land use on groundwater quality in Darmstadt is higher than the impact of background geological processes. The occurrence of Cl, B and Fe is only influenced by land use, while EC, HCO3 and PO4 are controlled by geology and land use. An integrative, spatially differentiating quantification of mass fluxes shows that e. g. Cl and B are introduced from urban sources such as leaking sewers and road salting. Input is highest under industrial areas (Cl 317 mg/d?·?m², B 0,6 mg/d?·?m²). For Ntot agricultural input (114 mg/d?·?m²) is more important than urban input with a maximum of 14 mg/d?·?m². Comparing overall urban input with estimated urban input, it can be concluded that there are additional sources for HCO3, Ca, Mg, SO4, Na, Cl, B and NO3, which are not included in the estimated input (e. g. geogenic sources, fill material, industrial sources & degradation processes). PO4 and Ntot on the other hand are being degraded and COD is consumed. A decrease of concentrations downstream from the city can be ascribed to diving plumes.  相似文献   

20.
A method for nitrate analysis based on second derivative UV/Visible spectroscopy was developed by Simal et al. (1985: Simal J., Lage M. A., and Iglesias I. (1985) Second derivative ultraviolet spectroscopy and sulfamic acid method for determination of nitrates in water. J. Assoc. Analyt. Chem. 68, 962-964) and Suzuki and Kuroda (1987: Suzuki, N. and Kuroda R. (1987) Direct simultaneous determination of nitrate and nitrite by ultraviolet second-derivative spectrophotometry. Analyst 112, 1077-1079), and later modified for the analysis of total nitrogen in aqueous samples of varying nitrate:organic nitrogen ratios (Crumpton et al., 1992: Crumption W. G., Isenhart T. M. and Mitchell P. D. (1992) Nitrate and organic N analyses with second-derivative spectroscopy. Limnol. Oceanogr. 37, 907-913). The procedure uses the second derivative of the absorption spectrum for nitrate (NO3-), which has a peak at approximately 224 nm that is proportional to the NO3- concentration. Samples for total N analysis are first oxidized to NO3- by persulfate digestion. The objectives of this study were to: (1) test the accuracy and precision of the second derivative method through the use of NIST-traceable wastewater check samples; (2) determine whether the second derivative method for nitrate analysis can be used for wastewater samples and whether the method compares favorably with other currently used nitrate analysis methods; and (3) use the method to analyze wastewater samples containing a range of nitrate and total nitrogen concentrations. Our results indicated that the method needed to be modified to include a longer digestion time (60 min) and dilution of samples prior to digestion (if needed). With the modified method, nitrogen recoveries were not significantly different (P > or = 0.05) from samples with known N concentrations. In addition, nitrate concentrations in constructed wetland and wastewater samples analyzed by both second derivative spectroscopy and ion chromatography were not significantly different. Total nitrogen concentrations in wastewater samples also compared favorably to the same samples analyzed by Kjeldahl digestion. The method is faster, simpler, requires smaller sample volumes, and generates less waste than many EPA-approved methods of N analysis, and may offer a suitable alternative to current methods for analysis of nitrate and total N in wastewater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号