首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于Hager-Zhang提出的共轭梯度法,构造了一种新的谱风,证明了该方法不依赖于任何线搜索就具有充分下降性,并且在Armijo搜索下证明了算法的全局收敛性。数值试验表明,该方法明显优于谱DY、谱FR、谱PRP算法。  相似文献   

2.
优化算法研究,主要工作是给迭代点寻求可接受且有效的步长及可行的下降方向.在求解大规模无约束优化问题时,共轭梯度法被广泛应用.其中, Polak-Ribiere-Polyak方法 (简称:PRP方法)是众多共轭梯度法中数值表现相对较好的,但它在许多线搜索下并不具备全局收敛性,如何发挥PRP方法数值优良,而克服其收敛性差,是学者们致力探索的热点课题.本文提出新的PRP参数公式,并对Armijo线搜索方法进行修正,建立了新Armijo线搜索下的PRP共轭梯度算法,证明算法满足充分下降条件,并证明算法在适当条件下具有全局收敛性.  相似文献   

3.
指出了文献[10]中两类共轭梯度法的错误证明,提出了Wolfe搜索下一类以DY公式为上界的广义共轭梯度法,该算法在每一步不依赖于任何搜索自行产生充分下降方向,在适当的条件下证明了算法的全局收敛性.  相似文献   

4.
在WYL共轭梯度法的基础上,提出了一种新的谱共轭梯度法,并且证明了该方法在Armijo线搜索下具有充分下降性和全局收敛性.数值试验表明该方法是有效的。  相似文献   

5.
共轭梯度法是解决无约束非线性最优化问题的重要的方法之一.基于FR方法好的收敛性并考虑到dk的下降性,提出了一类新的共轭梯度法,并在两种Armijo型搜索下,研究了新方法的全局收敛性.数据实验表明新方法是有效的.  相似文献   

6.
一种新共轭梯度法的全局收敛性   总被引:1,自引:0,他引:1  
对求解无约束最优化问题的共轭梯度法进行了研究,提出了计算βk的一种新的公式,并对标准Wolfe搜索条件进行了推广,得到一种新的共轭梯度法。在一定条件下证明了该算法的全局收敛性,同时给出了一些数值例子,得到很好的数值结果。  相似文献   

7.
为解决大规模无约束优化问题,基于Wolfe线搜索技术,提出新的修正HS共轭梯度法。在水平集有界和梯度Lipschitz连续的条件下,证明新算法具有全局收敛性。数值实验证实此算法有效可行。  相似文献   

8.
对求解无约束最优化问题的共轭梯度法进行了研究,提出了计算βk的一种新的公式,并对标准Wolfe搜索条件进行了推广,得到一种新的共轭梯度法.在一定条件下证明了该算法的全局收敛性,同时给出了一些数值例子,得到很好的数值结果.  相似文献   

9.
改进的共轭梯度法及其收敛性   总被引:5,自引:0,他引:5  
共轭梯度法是求解大规模无约束优化问题的一种有效方法。针对算法的优劣主要依赖于步长因子和搜索方向的特点,结合共轭梯度法的共轭性质,提出一种改进的可以控制步长因子的共轭梯度算法。在建立算法的几个重要引理和全局收敛性定理后分别给出了证明。最后对算法进行了数值实验,实验结果表明算法具有良好的收敛性和有效性。  相似文献   

10.
共轭梯度法是一类解决无约束优化问题的有效方法,尤其适用于大规模优化问题的求解。提出一族包含DY方法的新的共轭梯度法,并证明了该算法在Wolfe线搜索条件下具有全局收敛性,数值结果表明该算法是有效的。  相似文献   

11.
针对许多共轭梯度算法的充分下降性都依赖于线搜索过程这一不足,给出了一个新的共轭梯度算法,并在步长搜索满足Zoutendijk条件下证明了算法的全局收敛性.  相似文献   

12.
针对参数βk的不同选取可以构成不同的共轭梯度法,给出了一类求解无约束最优化问题的修正的共轭梯度算法,这种算法能够在较弱条件下证明选定的卢。在每一步都能产生一个下降方向,且在Wolfe线搜索下具有全局收敛性.另外这种算法在另一种Wolfe搜索条件下,若搜索方向为下降时,也具有全局收敛性.  相似文献   

13.
共轭梯度法是求解非线性优化问题的一种重要方法.通过对共轭梯度法及其全局收敛性的分析,提出一个新的非线性共轭梯度公式,采用该公式和Wolfe非精确线搜索的方法是全局收敛的.文末的数值实验验证了算法是有效的.  相似文献   

14.
提出一个新的共轭梯度法用于解决无约束最优化问题,并证明了新公式的充分下降性以及在步长满足Zoutendijk条件下新公式的全局收敛性。数值结果表明,这种方法很有价值。  相似文献   

15.
提出一个基于HS和DY方法的新共轭梯度法展公式,证明了该方法在σ∈(0,1/3)的SWP搜索下全局收敛,数值试验表明该方法具有良好的数值结果。  相似文献   

16.
共轭梯度法是求解大规模约束问题的有效算法,不同的参数选取构成不同的共轭梯度法.通过研究一个新的求解无约束最优化问题的共轭梯度法,证明该公式在广义Wolfe线搜索下是具有充分下降性,并且是全局收敛的.  相似文献   

17.
共轭梯度法是求解非线性优化问题的一种重要方法,尤其适用于大规模优化问题的求解。提出一个新的非线性共轭梯度公式,采用该公式和Wolfe非精确线搜索的方法,使之全局收敛。经数值实验验证该算法是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号