首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用水热法合成SrBi2Ta2O9(SBT)纳米粉体,成型后采用常规烧结法制备SBT陶瓷.利用XRD和SEM研究陶瓷的物相和微观形貌;利用介电温谱研究陶瓷的介电性能.结果表明:采用水热法能够制备出颗粒细小均匀、结构致密且物相纯净的SBT陶瓷;其居里温度为375℃,对应的介电常数为114.54.  相似文献   

2.
采用了固相反应法制备了CoO掺杂的MgTiO3CaTiO3(MCT)介质陶瓷.研究了CoO掺杂对MCT介质陶瓷烧结特性、相组成和介电性能的影响.结果表明:CoO掺杂能有效地降低MCT陶瓷的烧结温度至1250℃;CoO掺杂能有效地降低MCT陶瓷的介电损耗(~10-5).  相似文献   

3.
采用固相反应法制备Bi1.5-xCaxZnNb1.5O7-yFy(0.00≤x≤0.20,以下简称BZN-x)陶瓷样品,研究了Ca2+、F-共掺杂对BZN-x陶瓷烧结特性、微观结构和介电性能的影响。结果表明:BZN-x陶瓷样品的最佳烧结温度为1 020℃,CaF2在α-BZN中的固溶度是0.05,伴随着CaF2掺杂量的增加,介电常数逐渐减小,而介电损耗先减小然后又微弱增加(测试频率为1 MHz时)。通过介电损耗、电阻率的变化确认了CaF2掺入α-BZN后的缺陷补偿方式,同时也证实随着掺杂量的增加,介电常数峰值温度向低温移动与缺陷补偿方式有关。  相似文献   

4.
以碳粉和蛋清作为造孔剂,利用固相法制备CaCu3Ti4O12(CCTO)多孔陶瓷.研究了造孔剂含量对CCTO多孔陶瓷体积密度、显微结构和介电性能的影响.结果表明,随着碳粉含量增加,体积密度先增加后减小;而随着蛋清含量增加,体积密度先减小后增加.和碳粉相比,蛋清加入制备的试样具有较小、较均匀的孔隙.当频率大于331.5KHz时,添加碳粉可以降低介电损耗.当频率大于4KHz时,添加碳粉介电常数有所下降.当频率大于2KHz时,添加蛋清可以增大介电损耗,但是增加幅度较小.添加蛋清可以增大介电常数.  相似文献   

5.
采用固相反应法制备(Bi1.975Li0.025)(Zn1/3Nh2/3-x/2Tix/2)2O7,陶瓷,研究了当Li 的替代量一定时,不同量的Ti4 替代Nb5 对BLXNT系介质材料介电性能的影响.研究结果表明:在取代的范围内仍然保持单斜焦绿石相;1MHz介电常数的温度系数由225.35×10-6/℃逐渐增加到416.48×10-6/℃;在-30℃≤T≤130℃,观察到BLZNT样品出现介电损耗弛豫现象,随着掺杂含量的增加,介电损耗弛豫峰向高温移动.  相似文献   

6.
采用传统的水热合成法,将La3+/Ca2+直接掺杂到反应物体系中,制备了La3+/Ca2+共掺钛酸钡(BaTiO3)粉体;XRD晶相分析表明,所制备的粉体晶相结构单一,为四方相钙钛矿型晶体结构;SEM形貌分析表明,适量的La3+/Ca2+掺杂有利于钛酸钡陶瓷的致密化烧结,并且能够改善其介电性能。电学性能分析结果表明,随着La3+与Ca2+质量分数比的增大,其介电常数和绝缘电阻先增大后减小,而介电损耗的变化规律则恰好相反。当La3+与Ca2+质量分数比为2∶1时,其介电常数达到最大值,得到了介电常数为4 900、介质损耗为0.014 8、绝缘电阻为3.0×1012Ω的高介电低损耗粉体。  相似文献   

7.
以热压烧结的方法制备了Al2O3/Cr复合材料,探讨了Al2O3/Cr复合材料显微结构、力学性能及微波介电性能随Cr粒子含量变化的规律。SEM结果表明,在垂直于压力方向上,Cr粒子有明显的受压拉伸现象;当Cr粒子含量从10vol%增加至30vol%时,复合材料中Cr粒子的分布由孤立向桥连方式转变。随Cr粒子含量的增加,复合材料致密度略有下降,抗弯强度明显降低。与纯氧化铝陶瓷相比,含10vol%Cr粒子Al2O3/Cr复合材料的断裂韧性提高了81%以上。复介电常数测试结果表明,在8.2~12.4GHz频率范围内,复合材料复介电常数的实部和虚部随Cr粒子含量的增加大幅度上升,且存在明显的频散效应。当Cr粒子含量达到30vol%时,由于Cr粒子之间的部分桥连现象而使介电常数虚部在一定频段出现负值。  相似文献   

8.
采用固相反应制备Sr1-xBixTiO3陶瓷,研究Bi掺杂对SrTiO3的介电性能、缺陷结构及缺陷偶极子的影响。通过X线衍射(XRD)分析其物相结构,表明在掺杂浓度范围内均未出现第二相。通过GULP模拟,得到Sr1-xBixTiO3中可稳定存在的缺陷偶极子有[2BiSr·+VSr"]、[VO··+VSr"]、[2VO··+VTi'']和[VO··+2TiTi']。各组掺杂陶瓷样品的弛豫特性均满足Arrhenius定律,这是弛豫受热激发所致,随着Bi掺杂量的增加弛豫激活能增加,弛豫度减小。  相似文献   

9.
采用固相合成法制备了(Ba0.92-xCa0.08Ndx)(Ti0.82Zr0.18)O3 (0≤x≤0.02)陶瓷样品,借助XRD、LCR等手段对该陶瓷的结构和介电性能进行了研究。结果表明:当x=0.015时,陶瓷样品出现第二相。通过GULP软件模拟计算并结合实验数据分析可知:随着Nd3+浓度增加,Ti4+空位补偿机制优先发生,可能伴有少量自我补偿。增大Nd3+掺杂量,介电常数与介电损耗均呈现下降趋势,介电峰值扩展并向低温移动。随着Nd3+掺杂量增加,陶瓷样品呈现弛豫型铁电体特征,这与偏离平衡位置Nd3+和缺陷偶极子[4NdBa?+VTi″″]产生的无规场有关。  相似文献   

10.
采用固相反应法制备Bi1.5-xCaxZnNb1.5O7-yFy(0.00≤x≤0.20,以下简称BZN-x)陶瓷样品,研究了Ca2+、F-共掺杂对BZN-x陶瓷烧结特性、微观结构和介电性能的影响。结果表明:BZN-x陶瓷样品的最佳烧结温度为1 020℃,CaF2在α-BZN中的固溶度是0.05,伴随着CaF2掺杂量的增加,介电常数逐渐减小,而介电损耗先减小然后又微弱增加(测试频率为1 MHz时)。通过介电损耗、电阻率的变化确认了CaF2掺入α-BZN后的缺陷补偿方式,同时也证实随着掺杂量的增加,介电常数峰值温度向低温移动与缺陷补偿方式有关。  相似文献   

11.
以钛酸四丁酯为原料,利用溶胶凝胶法制备了Cr/Ag共掺杂的TiO2纳米材料.采用XRD、SEM、EDS等测试分析技术对掺杂纳米TiO2粉体进行了表征;以甲基橙为降解物,在太阳光照射条件下研究了掺杂对光催化活性的影响.研究结果表明:掺杂后的纳米TiO2的光催化性能明显提高,优于纯TiO2.当共掺杂的比例为Cr 1.0%/Ag 0.5%时,样品的效果最佳,对甲基橙的3h降解率达到97.63%.  相似文献   

12.
沸石微粒负载La2O3-ZnO-TiO2的光催化性能   总被引:2,自引:0,他引:2  
利用80目天然斜发沸石作载体制备La2O3(0.5%)-ZnO(20%)-TiO2/沸石复合光催化材料(LZTZ),以20 w紫外灯为光源,在活性艳红K-2BP初始浓度、催化剂投加量与空气通入量一定的光催化反应器中,通过2 h光催化降解的吸光度变化对催化剂进行了性能评价,并结合样品的SEM、XRD、IR等分析,探讨了复合光催化材料的最佳合成条件及影响其光催化活性的因素.研究结果表明,分散剂PEG400添加量为1.0 g/100ml,LZT涂覆5层,在120℃下干燥12 h后经200℃焙烧2 h的LZTZ样品光催化活性最高,重复使用-再生10次后光催化活性仅降低了5.6%,且趋于稳定.  相似文献   

13.
采用粉末冶金方法制备了新型La2O3-Gd2O3-Mo次级发射材料. 测试了其次级发射性能. 实验结果表明,在钼中加入稀土氧化物可以具有很好的次级发射性能,其次级发射性能与激活温度密切相关. 经过1360℃的激活处理后,该材料的最大次级发射系数可达2.65,超过了材料使用要求的2.0的发射水平.  相似文献   

14.
采用 XRD、SEM等方法对 La2O3-Mo阴极中 La2O3纳米粒子的形成进行了研究.在掺杂 La(NO3)3的MoO2粉还原阶段,发生La2O3与MoO2的固溶及La2O3的脱溶,从而形成纳米La2O3粉末.Mo晶粒表面上的纳米La2O3微粒分布形式不同,导致了坯体材料中微米级和纳米级两种La2O3微粒的存在形式.另外,粉末态的La2O3纳米粒子在高温烧结过程中熔化,La-O键断裂形成的La3+、O2-离子通过固溶、脱溶过程亦可形成坯体中的La2O3纳米微粒.  相似文献   

15.
1 IntroductionMgTiO3 basedceramicsarewellknownasmicrowavedielectricwithhighQvalueandlowτfvalue .Since1990s ,FerreiraetalReportedthemicrowavedielectricpropertiesofMgTiO3 CaTiO3ceramicsdopedwithLa2 O3,Cr2 O3[1 3] .Mostoftheresearcheswereconcernedwithimpro…  相似文献   

16.
17.
18.
烧结Al2O3陶瓷在海水中的耐腐蚀性能研究   总被引:1,自引:0,他引:1  
通过对SEM、孔径分布、孔隙率、弯曲强度等多项性能的测试,研究了由两性氧化物氧化铝烧结而成的陶瓷材料在海水中腐蚀的可能性. 研究结果表明,烧结氧化铝陶瓷在海水中浸泡一年后未发生腐蚀反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号