首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
使用简便的混合溶剂法合成稀土CeO2材料,以Ce(NO3)3.6H2O为铈源,PVP为表面活性剂,在乙醇与水混合溶剂体系中反应得到CeO2。通过改变PVP的用量及反应时间制备了不同形貌的CeO2纳米微晶,X射线衍射测定其物象为立方晶系的CeO2,SEM、TEM等测试手段对产物的不同形貌和纳米尺度进行了表征。Eu3+∶CeO2八面体纳米微晶的光致发光(PL)测试结果表明,荧光峰对应着不同的发光中心,有很好的荧光特性。  相似文献   

2.
对近年来国内外涌现的各种制备纳米CeO2的方法进行了较为详细的评述。重点介绍了纳米CeO2在超精密抛光、汽车尾气净化催化、固体氧化物燃料电池等高科技领域中的应用状况,指出今后研究的方向是纳米CeO2粉体制备过程中的颗粒大小与形貌的控制及其分散性的改善,粉体形核与生长过程中的动态观测与机理研究,以及研究成果的工业化规模生产与应用。  相似文献   

3.
纳米CeO2粉体的制备及应用   总被引:4,自引:0,他引:4  
对近年来国内外涌现的各种制备纳米CeO2的方法进行了较为详细的评述。重点介绍了纳米CeO2在超精密抛光、汽车尾气净化催化、固体氧化物燃料电池等高科技领域中的应用状况,指出今后研究的方向是纳米CeO2粉体制备过程中的颗粒大小与形貌的控制及其分散性的改善,粉体形核与生长过程中的动态观测与机理研究,以及研究成果的工业化规模生产与应用。  相似文献   

4.
以Ce(NO3)3.6H2O和(NH4)2CO3为沉淀源,搀杂稀土氧化物Sm2O3,利用柠檬酸作为络合剂和分散剂,制备出纳米(CeO2)0.86(Sm2O3)0.14.并采用TEM、XRD等方法对其热分解所得纳米(CeO2)0.86(Sm2O3)0.14的形貌及结晶性等进行了表征.结果表明:随着柠檬酸加入量的增加,焙烧生成的纳米(CeO2)0.86(Sm2O3)0.14颗粒的形貌从纳米线向类球形颗粒变化,所得(CeO2)0.86(Sm2O3)0.14为立方萤石结构,且随焙烧温度的提高,晶化程度增大.  相似文献   

5.
稀土掺杂钇铝石榴石粉体的研究进展   总被引:1,自引:0,他引:1  
钇铝石榴石(YAG)是一种理想的激光材料和高温结构材料.其作为荧光粉的应用非常广泛.本文即对稀土掺杂钇铝石榴石粉体目前的研究现状做了较系统的概述,着重介绍了钇铝石榴石的制备方法,如高温固相反应法、燃烧法、沉淀法、溶剂热法等.同时简要分析了各种方法的优缺点,指出溶剂热法能够制得分散性好、形貌较好的粉体.  相似文献   

6.
采用燃烧法制备了Yb3+/Er3+共掺杂CeO2纳米晶发光粉末,并通过改变稀土硝酸盐和甘氨酸的比例对合成样品的颗粒度进行控制。通过X射线衍射及扫描电镜对所得粉体进行了检测,分析其微观结构及形貌特征;并对样品在980 nm激光激发下的上转换发光特性进行了研究。结果表明,nG/nN=0.36,退火温度为1 000℃时,所得样品结晶最好,晶粒尺寸约为50 nm;掺杂物质的量分数为3%Er3+时,粉体的上转换发光效果最好;当Yb3+的物质的量浓度为10%且Er3+的物质的量浓度为3%时,所得CeO2:Yb3+/Er3+纳米晶粉体获得的上转换发光效果最好;用980 nm激发光源激发CeO2基质时,可观测到峰值位于525,545,557,654和674 nm的上转换发光,其中525 nm处被识别为2H11/2→4I15/2跃迁,545,557 nm处为4S3/2→4I15/2跃迁,654,674 nm处为4F9/2→4I15/2跃迁。  相似文献   

7.
采用乳液共聚法制备了聚苯乙烯-丙烯酸羟乙酯[P(St-HEA)]微球,通过流延成膜法制备了P(St-HEA)薄膜,再利用溶胶-凝胶模板法煅烧得到有序多孔二氧化铈(CeO2)薄膜.采用红外光谱、扫描电镜以及X射线衍射分析对P(St-HEA)微球单分散性及有序多孔CeO2薄膜表面形貌和结构进行了表征.结果表明,当丙烯酸羟乙酯(HEA)用量占总单体的用量低于10%(质量分数)时,制备的P(St-HEA)微球单分散性和表面较好.通过P(St-HEA)的胶体晶体模板制备了有序多孔CeO2薄膜,所得孔径约为190 nm,X-射线衍射分析显示有序多孔CeO2薄膜是立方萤石结构.  相似文献   

8.
以硝酸钙、磷酸、氨水为原料,蒸馏水为溶剂,采用化学沉淀法制备出磷酸钙粉体,经过高温1 350℃煅烧2h后迅速降至室温,制备出α-磷酸钙粉体.再用离子交换法将F、K掺入到α-磷酸钙水化后的混合液中,制备出氟钾共掺羟基磷灰石粉体.利用X射线衍射仪(XRD)、红外光谱仪(FTIR)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)进行分析、表征,研究了在控制Ca/P比、溶液的pH值条件下,反应温度对所制备粉体结构和形貌的影响.研究表明:在Ca/P比等于1.67,溶液pH值等于14时,温度越高,越有利于F、K元素掺入羟基磷灰石中.  相似文献   

9.
以Ce(NO3)3·6H2O、Pr6O11为原料,采用共沉淀-水热法制备了Pr-CeO2粉体.研究了不同沉淀剂对粉体晶体结构和形貌的影响以及不同水热温度对粉体晶体结构、颜色的影响.结果表明:采用草酸为沉淀剂制得的样品结晶性能好,易生成较大尺寸的棒状晶粒,但样品中含杂质相;采用氨水为沉淀剂制得的样品结晶性能相对较差,但易生成纳米级多边形小晶粒,产物较纯;以氨水为沉淀剂时,随着水热温度的升高,Pr-CeO2粉体的晶化程度提高,Pr在CeO2晶格中的固溶度变大,粉体颜色由橙色变为红色.  相似文献   

10.
纳米二氧化铈制备与EPR特性研究   总被引:1,自引:0,他引:1  
用溶胶-凝胶法制备了CeO2纳米材料,并在不同焙烧温度下得到颗粒大小不同的CeO2材料.分析了CeO2独特结构特点,研究了不同焙烧温度下制备的CeO2材料颜色不同的原因,发现颗粒大小增大、颜色变浅是由于粒子对可见光的吸收能力减弱,其折射、散射光增多的缘故所致;利用电子顺磁共振(EPR)技术研究了不同焙烧温度下制备的CeO2,发现CeO2具有较强的热稳定性;分析了不同样品中的色心和O2^-信号不同的原因.  相似文献   

11.
以具有不饱和双键的油酸为表面活性剂,对水溶胶中的CeO2纳米粒子进行表面修饰.TEM分析表明,经表面修饰的CeO2纳米粒子基本呈球形,粒径约为3nm,分布均匀;并且表面包覆油酸的CeO2纳米粒子易溶于弱极性溶剂,不易溶于极性溶剂.  相似文献   

12.
胶溶法合成CeO2纳米晶   总被引:3,自引:0,他引:3  
用胶溶法合成了不同粒径的CeO2纳米晶,XRD分析表明,所合成的CeO2纳米晶属立方晶系,空间群为O5H-FM3M.计算表明,随着焙烧温度的升高,CeO2晶粒度增大,而平均晶格畸变率则随晶粒度的增大而减小,表明粒子越小,晶格畸变越大,晶粒发育越不完整.TEM分析表明,所合成的CeO2纳米晶呈球形,随焙烧温度的升高,粒子的粒径增大.  相似文献   

13.
采用聚乙二醇凝胶法制备了不同粒径的单相CeO2 纳米晶。XRD分析表明 ,所合成的CeO2 纳米晶属于立方晶系 ,空间群为O5 H-FM 3M。TEM分析表明 ,CeO2 纳米晶呈球形 ,且随焙烧温度的升高 ,CeO2 纳米晶粒径增大。热失重分析表明 ,样品的失重率主要取决于焙烧温度 ,而焙烧时间的影响较小。密度分析表明 ,CeO2 纳米粉末的密度随焙烧温度的升高、粒径的增大而增加。  相似文献   

14.
溶胶-凝胶法合成二氧化铈纳米晶   总被引:23,自引:0,他引:23  
用溶胶-凝胶法合成了不同粒径的CeO2纳米晶。XRD分析表明,不同焙烧温度下所合成的CeO2纳米晶均属于立方晶系,空间群为O^5H-FM3M。TEM分析表明,CeO2纳米粒子呈球形,粒度分布集中,粒度随焙烧温度的增加而增大。X射线线宽法计算表明,CeO2纳米粒子越小,晶格畸变越大,晶粒发育越不完整,衍射强度越低。热失重分析表明,热失重率主要受焙烧温度的影响,焙烧时间的影响很小。红外光谱分析表明,纳米CeO2比普通CeO2具有更高的表面活性。  相似文献   

15.
钛合金表面耐磨性能差限制了电厂重要成品部件的寿命。采用激光熔覆方法,研究了不同原料状态和稀土添加对原位合成复合TiB/TiN钛基涂层强化相粒度以及分布均匀性的影响。采用X射线衍射分析(XRD)、扫描电子显微分析(SEM)和高分辨投射分析(TEM)技术等方法研究了强化相组织形貌,得出以下结论:分别采用h-BN和纯硼酸、尿素为原料形成的Core-shell结构为原料,涂层中均原位合成TiB/TiN强化颗粒,采用非晶态BN有利于获得细小强化相组织,但强化相含量相对较少;添加CeO2有利于强化相晶粒细化以及均匀分布。  相似文献   

16.
稀土修饰TiO2光催化降解甲基橙反应机理   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备纯的及掺杂不同量Ce的TiO2纳米粒子,利用UV-Vis漫反射光谱及XRD等对所制备样品进行表征,以紫外灯为光源,甲基橙水溶液的脱色为模型反应,研究了CeO2/TiO2的光催化降解反应活性.实验发现:掺杂Ce的TiO2纳米粒子反射光谱特性向可见光方向红移到了500nm;掺杂Ce的TiO2纳米粒子比纯的TiO2纳米粒子对光的吸收率高、吸收能力强;掺杂的Ce4+仅有少量进入TiO2晶格中,而大部分的Ce4+没有进入TiO2晶格中,而是以小团簇的CeO2形态均匀地分散在TiO2纳米粒子中或者是覆盖在其表面上,说明了掺杂Ce能提高TiO2光催化反应活性,且掺杂Ce最佳浓度是2.0mol%.光催化降解反应机理可能有两种途径,一种途径是掺杂离子协同光催化降解甲基橙反应机理,另一种途径是光敏剂与掺杂离子协同光催化降解甲基橙反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号