首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow mesoporous carbon spheres (HMCSs) have been prepared by a simplified replication route from a solid silica core/mesoporous silica shell aluminosilicate (SCMS-Al) template, which was synthesized by directly incorporating aluminum species into the mesoporous framework during template synthesis. The size of HMCSs can be tuned between 80 and 470 nm by simply changing the diameters of SCMS-Al. The HMCSs have uniform mesopores with a narrow pore size distribution (3.4-4.1 nm), and high surface area, (890-1150 m2/g) and total pore volumes (0.75-1.15 cm3/g). The techniques of N2 sorption isotherms, TEM, EDX and SEM were used to characterize the as-synthesized spheres.  相似文献   

2.
Objective: To explore the suitable application of MCM-41 (Mobil Composition of Matter number forty-one)-type and MCM-48-type mesoporous silica in the oral water insoluble drug delivery system.

Methods: Cilostazol (CLT) as a model drug was loaded into synthesized MCM-48 (Mobil Composition of Matter number forty-eight) and commercial MCM-41 by three common methods. The obtained MCM-41, MCM-48 and CLT-loaded samples were characterized by means of nitrogen adsorption, thermogravimetric analysis, ultraviolet-visible spectrophotometry, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and powder X-ray diffractometer.

Results: It was found that solvent evaporation method was preferred according to the drug loading efficiency and the maximum percent cumulative drug dissolution. MCM-48 with 3D cubic pore structure and MCM-41 with 2D long tubular structure are nearly spherical particles in 300–500?nm. Nevertheless, the silica carriers with similar large specific surface areas and concentrating pore size distributions (978.66?m2/g, 3.8?nm for MCM-41 and 1108.04?m2/g, 3.6?nm for MCM-48) exhibited different adsorption behaviors for CLT. The maximum percent cumulative drug release of the two CLT/silica solid dispersion (CLT-MCM-48 and CLT-MCM-41) was 63.41% and 85.78% within 60?min, respectively; while in the subsequent 12?h release experiment, almost 100% cumulative drug release were both obtained. In the pharmacokinetics aspect, the maximum plasma concentrations of CLT-MCM-48 reached 3.63?mg/L by 0.92?h. The AUC0–∞ values of the CLT-MCM-41 and CLT-MCM-48 were 1.14-fold and 1.73-fold, respectively, compared with the commercial preparation.

Conclusion: Our findings suggest that MCM-41-type and MCM-48-type mesoporous silica have great promise as solid dispersion carriers for sustained and immediate release separately.  相似文献   

3.
利用表面活性剂十八烷基三甲基溴化铵(STAB)为模板、正硅酸乙酯(TEOS)为硅源、盐酸为催化剂,在较低的表面活性剂浓度下(小于4%)合成了介孔氧化硅,并研究了不同的反应条件对介孔结构及有序度的影响。在热乙醇萃取或者高温煅烧除去模板剂之后,利用红外(IR)、X射线电子衍射(XRD)、高分辨透射电子显微镜(HRTEM)以及N2的吸附-脱附曲线对合成的介孔材料进行了表征。结果表明,合成的介孔氧化硅具有MCM-41型有序的孔道结构、大的孔体积(不小于1cm3/g)和BET比表面积(不小于1400m2/g),孔径均一且分布较窄。  相似文献   

4.
有序介孔氧化硅孔道氧化锰团簇组装研究   总被引:1,自引:1,他引:0  
田高  吴超  陈文  周静  陈龙 《功能材料》2005,36(7):1080-1082
以有序介孔氧化硅MCM-41为主体材料,通过浸渍法及后续热处理工艺,在孔道中组装氧化锰的团簇粒子,并对其进行结构表征。通过XRD、HR—TEM、XPS及N2吸附表明氧化锰的团簇粒子已经成功组装到MCM-41有序孔道中。通过对不同孔径有序介孔材料的氧化锰团簇粒子的组装,表明随着孔道中组装量的增加,350nm附近光致发光强度增强,吸收边发生红移,同时1000nm附近吸收带宽化。  相似文献   

5.
Mesoporous silica nanospheres (MSNs) with regular pores have been fabricated using cetyltrimethylammonium bromide (CTAB) as surfactant in high pH solution. The average size of the MCM-41 silica nanospheres was reduced from 95 to 48€nm, while the concentration of CTAB increases from 7.7 to 11.5mmol/L. Carbon black was deposited on MSNs using hexane as the carbon source. By mixing such materials with silicone rubber, the composites become conducting when equivalent carbon volume fraction is higher than a certain region, which is less sensitive to the morphology of the deposited carbon. The improved piezoresistance repeatability has been found on the composite sample of MSNs/carbon plus extra high conducting carbon black. The load and strain sensitive range up to 0.35MPa and 0.10, respectively, with less resistance fluctuation during multiple press loading cycles.  相似文献   

6.
Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N2 physisorption. The as-synthesized materials had high surface area of 527 m2 g−1 and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.  相似文献   

7.
The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t90%) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 µM and the linear detect range is about from 4.0 µM to 87.98 µM for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis–Menten (KMapp) is estimated using the Lineweaver–Burk equation and the KMapp value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.  相似文献   

8.
Carbon nanotubes were produced from either a template or the polymer-filled pore systems of mesoporous silicates of various structures and dimensions by heat treatment in the absence of air. Successful synthesis was done when the template molecules contained little or no oxygen. For SBA-15 material, where the structure-directing molecule used for synthesis of mesoporous silicate was polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, no carbon nanostructures were formed. A peculiar carbon nanostructure was generated from the template for pore expanded MCM-41. To demonstrate carbon nanotube formation from polymer in the mesoporous silicates, the mesopores of MCM-41, MCM-48, and SBA-15 silicates were filled with divinyl-benzene polymer and then graphitized at 1300 K. The polymer was successfully transformed into carbon nanotubes for the MCM class silicate but not the SBA-15 silicate.  相似文献   

9.
Spheroidal ordered mesoporous carbon materials with diameter of 2–10 μm were synthesized by direct carbonization of silica/triblock copolymer P123/butanol composites using P123 and butanol as the structure-directing agents and carbon precursors. The morphologies, structures and pore characteristics of the carbon materials were investigated by scanning and transmission electron microscopes, X-ray diffraction, and nitrogen sorption. It was found that the material possesses a cubic ordered mesoporous structure with Ia3d symmetry. The butanol addition directly affects the carbon morphology and pore structure. When the mass ratio of butanol to P123 is 0.5:1, the product exhibits a perfectly spheroidal morphology with a specific surface area of 1236 m2 g−1 and a total pore volume of 1.26 cm3 g−1. The formation mechanism of the spheroidal ordered mesoporous carbon materials is discussed briefly.  相似文献   

10.
单分散短棒状介孔二氧化硅的制备   总被引:2,自引:0,他引:2  
在温和碱性条件下,以十六烷基三甲基溴化铵为模板剂,正硅酸乙酯为硅源,平平加Os-25为助剂,制备出轴向尺寸为200nm左右,径向尺寸在60-80nm范围内的单分散短棒状纳米介孔二氧化硅MCM-41.研究了CTAB用量、平平加Os-25的用量、反应时间等因素对介孔形貌和纳米粒子分散性的影响.结果表明,适量的非离子表面活性剂平平加Os-25具有助模板剂的作用,可以有效地提高纳米介孔粉体的有序性.平平加Os-25与十六烷基三甲基溴化铵的摩尔比在0.02-0.06范围内,可以得到有序性好、分散性好的短棒状介孔二氧化硅MCM-41.  相似文献   

11.
《Materials Letters》2007,61(11-12):2378-2381
A commercial macrocellular polyurethane foam was used as template to fabricate macro/mesoporous silica and carbon monoliths. These materials have a cellular structure which is a faithful replica of that of the polymeric foam. In addition, they have a high surface area and a large porosity made up of accessible mesopores. The synthesis of silica monoliths was carried out by impregnating the polymeric foam with a mixture of a silica precursor and a surfactant. The carbon monoliths were prepared by using the silica monoliths as sacrificial templates. They retain the foamy vesicular structure and exhibit a high surface area of 1800 m2 g 1 and a large porosity made up of framework-confined mesopores of around 3.4 nm.  相似文献   

12.
This study explored the possibility of recovering waste powder from photonic industry into two useful resources, sodium fluoride (NaF) and the silica precursor solution. An alkali fusion process was utilized to effectively separate silicate supernatant and the sediment. The obtained sediment contains purified NaF (>90%), which provides further reuse possibility since NaF is widely applied in chemical industry. The supernatant is a valuable silicate source for synthesizing mesoporous silica material such as MCM-41. The MCM-41 produced from the photonic waste powder (PWP), namely MCM-41(PWP), possessed high specific surface areas (1082 m2/g), narrow pore size distributions (2.95 nm) and large pore volumes (0.99 cm3/g). The amine-modified MCM-41(PWP) was further applied as an adsorbent for the capture of CO2 greenhouse gas. Breakthrough experiments demonstrated that the tetraethylenepentamine (TEPA) functionalized MCM-41(PWP) exhibited an adsorption capacity (82 mg CO2/g adsorbent) of only slightly less than that of the TEPA/MCM-41 manufactured from pure chemical (97 mg CO2/g adsorbent), and its capacity is higher than that of TEPA/ZSM-5 zeolite (43 mg CO2/g adsorbent). The results revealed both the high potential of resource recovery from the photonic solid waste and the cost-effective application of waste-derived mesoporous adsorbent for environmental protection.  相似文献   

13.
The large particle sizes, inert frameworks, and small pore sizes of mesoporous silica nanoparticles greatly restrict their application in the acidic catalysis. The research reports a simple and versatile approach to synthesize walnut‐like mesoporous silica nanospheres (WMSNs) with large tunable pores and small particle sizes by assembling with Beta seeds. The as‐synthesized Beta‐WMSNs composite materials possess ultrasmall particulate sizes (70 nm), large radial mesopores (≈30 nm), and excellent acidities (221.6 mmol g?1). Ni2P active phase is supported on the surface of Beta‐WMSNs composite materials, and it is found that the obtained composite spherical materials can reduce the Ni2P particle sizes from 8.4 to 4.8 nm with the increasing amount of Beta seeds, which can provide high accessibilities of reactants to the active sites. Furthermore, the unique large pores and ultrasmall particle sizes of Beta‐WMSNs samples facilitate the reduction of the diffusion resistance of reactants due to the short transporting length, thus the corresponding Ni2P/Beta‐WMSNs composite catalysts show the excellent hydrogenating activity compared to the pure Ni2P/WMSNs catalyst.  相似文献   

14.
Hierarchically ordered mesocellular mesoporous silica materials (HMMS) were synthesized using a single structure-directing agent. The mesocellular pores are synthesized without adding any pore expander; the pore walls are composed of SBA-15 type mesopores. Small-angle X-ray scattering revealed the presence of uniform pore structures with two different sizes. Using HMMS as a nanoscopic template, hierarchically ordered mesocellular mesoporous carbon (HMMC) and polymer (HMMP) materials were synthesized. HMMS was used as a host for enzyme immobilization. To improve the retention of enzymes in HMMS, we adsorbed enzymes, and then employed crosslinking using glutaraldehyde (GA). The resulting crosslinked enzyme aggregates (CLEAs) show an impressive stability with extremely high enzyme loadings. For example, 0.5 g alpha-chymotrypsin (CT) could be loaded in 1 g of silica with no activity decrease observed with rigorous shaking over one month. In contrast, adsorbed CT without GA treatment resulted in a lower loading, which further decreased due to continuous leaching of adsorbed CT under shaking. The activity of crosslinked CT aggregates in HMMS was approximately 10 times higher than that of the adsorbed CT, which represents a 74-fold increase in activity per unit weight of HMMS due to higher CT loading.  相似文献   

15.
The aim of this work is to develop curcumin-loaded hollow mesoporous silica microspheres (HMSMs@curcumin) to improve the poor oral bioavailability of curcumin. Hollow mesoporous silica microspheres (HMSMs) were synthesized in facile route using a hard template. HMSMs and HMSMs@curcumin were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption measurements, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). In addition, to demonstrate the potential application of the HMSMs@curcumin, cytotoxicity, in vitro release behavior and in vivo pharmacokinetics of curcumin loaded in these HMSMs were investigated by using of Caco-2 cells and Sprague-Dawley (SD) rats, respectively. These mono-dispersed HMSMs exhibited high drug loading ratio and encapsulation efficiency due to the mesoporous shell and hollow core. The excellent characteristics of HMSMs such as mono-dispersed morphology, smooth surface, uniform, ordered and size-narrowing mesopores resulted in a good in vitro release profile of curcumin from HMSMs@curcumin. Moreover, an impressive improvement in the oral absorption of curcumin and prolonged systemic circulation time were achieved in the in vivo animal studies. In addition, the good biocompatibility of developed HMSMs with Caco-2 cells was confirmed based on the in vitro cytotoxicity assay. In conclusion, this system demonstrated a great potential for efficient delivery of curcumin in vitro and in vivo, suggesting a good prospect for its application in clinic for therapeutic drug delivery in future.  相似文献   

16.
介孔材料的制备及表征   总被引:1,自引:0,他引:1  
以正硅酸乙酯(TEOS)为硅源、十六烷基三甲基溴化铵(CTAB)为模板剂,在酸性溶液的条件下,利用模板剂与硅源水解后生成的聚集体之间相互作用,通过分子自组装,萃取除去模板剂而形成蠕虫状的介孔SiO2材料。采用TEM、XRD、N2吸附/脱附和FT—R等测试手段对产物进行了表征。结果表明,合成的介孔固体材料为无定型氧化硅,与煅烧法相比,该介孔固体的孔径较大(7nm以上)、孔壁较厚、孔径分布较窄、BET表面积较大(可达1200m2/g)。  相似文献   

17.
We report the blending effect of surfactant and sucrose as a nonsurfactant templating agent on the silica mesostructure. The CTAB/sucrose-templated mesoporous silica (SCS) was compared with CTAB-templated MCM-41. The MCM-41 showed spherical morphology with a particle diameter of 1.1–1.5 μm, and gave a bimodal size distribution, centered at 2.1 nm and 8.9 nm, which is assigned to hexagonally-arrayed cylindrical pores and interparticle-pores between small MCM-41 clusters, respectively. SCS gave unique and extraordinary morphology in which two different mesostructures have grown with both of them facing each other. The ordered MCM-41 pore structure clung to silica nanosphere-framed wormlike mesostructure, resulting in a bimodal pore size distribution centered at 2.1 nm and 7.0 nm. It was revealed that both of CTAB and sucrose act independently as a surfactant and a nonsurfactant template.  相似文献   

18.
单分散纳米介孔二氧化硅的制备   总被引:1,自引:0,他引:1  
在温和碱性条件下,以十六烷基三甲基溴化铵为模板剂,正硅酸乙酯为硅源,三嵌段共聚物F127为助剂,制备出粒径为60~80 nm的单分散纳米介孔二氧化硅MCM-41.研究了F127的用量对介孔结构和纳米粒子分散性的影响.结果表明,适量的非离子表面活性剂F127具有助模板剂的作用,可以有效地提高纳米介孔粉体的有序性;过量的F127阻碍六方介孔相的形成,降低样品的有序性.F127与十六烷基三甲基溴化铵的摩尔比在0.04~0.08范围内,可以得到有序性好、孔径均一和孔隙率大的单分散纳米介孔二氧化硅MCM-41.  相似文献   

19.
表面活性剂对纳米MCM-41分子筛分散性的影响   总被引:3,自引:0,他引:3  
采用聚乙二醇为分散剂,十六烷基三甲基溴化铵为模板剂,正硅酸乙酯为硅源,在室温碱性条件下合成了粒径为40~60 nm的单分散纳米球形MCM-41分子筛.利用XRD、TEM和N2吸附脱附等手段研究了聚乙二醇用量对纳米球形MCM-41的分散性和介孔结构的影响.结果表明,表面活性剂PEG的加入,可以明显改善纳米颗粒的分散性并且对颗粒形貌影响不大;表面活性剂PEG的加入,样品的六方结构有序性和孔尺寸发生变化.PEG量在1%~20%范围内,样品仍具有较高的六方孔道有序性;PEG量过大(60%)有序性明显下降.随着PEG加入量的增加,纳米MCM-41的晶面间距增大,孔尺寸增大.适量的聚乙二醇可以得到有序性好、比表面积大、孔径均一和孔隙率大的单分散纳米球形MCM-41分子筛.  相似文献   

20.
A new procedure for the synthesis of mesoporous silica with controlled porous structure and regular morphology was developed. It is based on the precipitation from a homogeneous environment using cetyltrimethylammonium bromide as a structure directing agent. The decrease in pH, which causes the formation of solid particles, is achieved by the hydrolysis of ethyl acetate. The procedure enables to obtain not only the MCM-41 mesoporous molecular sieve with a very high degree of pore ordering and phase purity, but also materials of a new type, viz. bimodal silicas containing both the MCM-41 mesopore system with a pore size of about 3 nm and a system of larger mesopores with sizes ranging from 10 to 30 nm. Owing to their structural properties and regular worm-like morphology, bimodal silicas are promising materials for applications in separation processes or as supports for bulky molecules or nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号