首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The objective of this study was to develop delivery systems for taste masking based on multiparticulates coated with Kollicoat® Smartseal 30D formulated as liquid oral suspensions. Coating of particles containing bitter drugs with Kollicoat® Smartseal reduced drug leaching into aqueous medium, especially when increasing pH, therefore can be used for the formulation of liquid dosage forms. Application of an intermediate layer of ion exchange resins between drug layer and coating can further decrease drug leaching into aqueous vehicle that is beneficial in terms of taste masking. Using optimized compositions of liquid vehicles such as addition of sugar alcohols and ion exchange resin, reconstitutable or ready-to-use liquid dosage forms with micropellets can be developed with bitter taste protection after redispersion lasting longer than 3?weeks, which exceeds the usual period of application.  相似文献   

2.
Electronic tongue systems have been developed for taste measurement of bitter drug substances in accurate taste comparison to development palatable oral formulations. This study was to evaluate the taste masking effect of conventional pharmaceutical sweeteners such as neohesperidin dihydrochalcone, sucrose, sucralose and aspartame. The model drugs were acetaminophen, ibuprofen, tramadol hydrochloride, and sildenafil citrate (all at 20?mM). The degree of bitterness was measured by a multichannel taste sensor system (an electronic tongue). The data was collected by seven sensors and analyzed by a statistical method of principal components analysis (PCA). The effect of taste masking excipient was dependent on the type of model drug. Changing the concentration of taste masking excipients affected the sensitivity of taste masking effect according to the type of drug. As the excipient concentration increased, the effect of taste masking increased. Moreover, most of the sensors showed a concentration-dependent pattern of the taste-masking agents as higher concentration provided higher selectivity. This might indicate that the sensors can detect small concentration changes of a chemical in solution. These results suggest that the taste masking could be evaluated based on the data of the electronic tongue system and that the formulation development process could be performed in a more efficient way.  相似文献   

3.
The purpose of this work was to taste mask highly bitter active, Ornidazole by means of particle coating. The aim of the work was further extended into formulating these coated particles into an acceptable oral dosage form such as dry suspension. Ornidazole drug particles were coated using Kollicoat® Smartseal 30 D as a taste masking polymer. Kollicoat® Smartseal 30 D is a methyl methacrylate – diethylaminoethyl methacrylate copolymer (6:4). Successful taste masking was achieved for Ornidazole with both top spray and bottom spray techniques using fluid bed processor. Effective taste masking was achieved at a weight gain of 50% w/w and 40% w/w for bottom and top spray techniques respectively without having a significant effect on the release pattern. A taste masked dry suspension was prepared with around 80% w/w coated Ornidazole particles and pH was maintained around 7–8. The suspension prepared with these coated Ornidazole particles, which were maintained in the alkaline pH was found to be stable for 7 days without affecting the taste. The bitter taste intensity was evaluated using volunteers by comparison of test samples with standard solutions containing Ornidazole at various concentrations. Thus, Kollicoat® Smartseal 30 D was found to be an effective polymer for taste masking of a bitter active like Ornidazole. The formulation development of taste masked dry suspensions was only possible due to unique properties possessed by Kollicoat® Smartseal 30 D.  相似文献   

4.
Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.  相似文献   

5.
Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.  相似文献   

6.
Many drugs are bitter and overcoming this bitter taste is a major barrier in developing a successful product, especially for pediatric patients. Approaches to mask taste include changing taste perception, creating a physical barrier to separate the drug from interacting with taste buds, and changing drug solubility. This review is focused on polymers and the different ways these materials are used to achieve taste masking. Attention is given to systems that are easily swallowed, as swallowability is another concern in developing palatable products for pediatrics. Variables that should be considered when selecting a taste-masking approach are also presented.  相似文献   

7.
Taste is one of the most important parameters governing patient compliance. Undesirable taste is one of several important formulation problems that are encountered with certain drugs. Oral administration of bitter drugs with an acceptable degree of palatability is a key issue for health care providers, especially for pediatric patients. Several oral pharmaceuticals, numerous food and beverage products, and bulking agents have unpleasant, bitter‐tasting components. So, any pharmaceutical formulation with a pleasing taste would definitely be preferred over a competitor's product and would translate into better compliance and therapeutic value for the patient and more business and profits for the company. The desire of improved palatability in these products has prompted the development of numerous formulations with improved performance and acceptability. This article reviews the earlier applications and methodologies of taste masking and discusses the most recent developments and approaches of bitterness reduction and inhibition for oral pharmaceuticals.  相似文献   

8.
In this paper, we discuss the application of a compartmental model to study the sensorial response, in terms of taste intensity versus time, in an oral solution for pharmaceutical use. The numerical model was developed from sensorial response curves obtained by a panel of three trained individuals. Parameter identification was carried out by means of a least-squares procedure that obtained the linear coefficients in the model by solving an exact linear least-squares problem conditional on the values of the nonlinear parameters for each iteration. Thus, nonlinear estimation was done in terms of the first-order kinetic parameters only, and ill-conditioning of the Hessian matrix present in these models was solved. Results of modeling for a set of formulations were used to determine the effects of various ingredients (sweeteners and an essence) on a baseline unflavored formulation of acetaminophen in a mixture of cosolvents. The first moment of the area under the curve of taste intensity versus time was found to be the best global indicator of taste for the purpose of product design. It was found that a mixture of sweeteners and an essence was the most efficient way of masking the bitter taste of this active ingredient.  相似文献   

9.
In this paper, we discuss the application of a compartmental model to study the sensorial response, in terms of taste intensity versus time, in an oral solution for pharmaceutical use. The numerical model was developed from sensorial response curves obtained by a panel of three trained individuals. Parameter identification was carried out by means of a least-squares procedure that obtained the linear coefficients in the model by solving an exact linear least-squares problem conditional on the values of the nonlinear parameters for each iteration. Thus, nonlinear estimation was done in terms of the first-order kinetic parameters only, and ill-conditioning of the Hessian matrix present in these models was solved. Results of modeling for a set of formulations were used to determine the effects of various ingredients (sweeteners and an essence) on a baseline unflavored formulation of acetaminophen in a mixture of cosolvents. The first moment of the area under the curve of taste intensity versus time was found to be the best global indicator of taste for the purpose of product design. It was found that a mixture of sweeteners and an essence was the most efficient way of masking the bitter taste of this active ingredient.  相似文献   

10.
Abstract

Context: The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress.

Objective: In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized.

Methods: (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated.

Results: The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine.

Conclusion: These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.  相似文献   

11.
Taste is one of the most important parameters governing patient compliance. Undesirable taste is one of several important formulation problems that are encountered with certain drugs. Oral administration of bitter drugs with an acceptable degree of palatability is a key issue for health care providers, especially for pediatric patients. Several oral pharmaceuticals, numerous food and beverage products, and bulking agents have unpleasant, bitter-tasting components. So, any pharmaceutical formulation with a pleasing taste would definitely be preferred over a competitor's product and would translate into better compliance and therapeutic value for the patient and more business and profits for the company. The desire of improved palatability in these products has prompted the development of numerous formulations with improved performance and acceptability. This article reviews the earlier applications and methodologies of taste masking and discusses the most recent developments and approaches of bitterness reduction and inhibition for oral pharmaceuticals.  相似文献   

12.
Chemically-modified celluloses are among the most commonly and widely used polymers in the food, cosmetic, and pharmaceutical industries today. Several products with widely different physicochemical properties are currently commercially available. Some of the major applications of these include their use as. i) tableting aids (binders, fillers, disintegrants); ii) viscosity imparting agents in the preparation of semi-solid, solution, and suspension formulations (eg, creams, gels, lotions, suspensions, shampoos, hair conditioners, food products, etc.); iii) taste and odor masking agents; iv) coating materials for tablets and other dosage forms; v) carriers for cosmetic and topical formulations; and vi) carriers including controlled- and/or sustained-release carriers for veterinary, agricultural, and pharmaceutical preparations. In this article, a general overview of various chemically-modified cellulosic products used in pharmaceutics, is presented.  相似文献   

13.
Context: Patient compliance can be reduced when bitter-tasting compounds, such as propiverine hydrochloride, are administered orally. Propiverine hydrochloride is an example of a drug with a bitter taste, used for the treatment of overactive bladders.

Objective: This study tested whether propiverine free base palatability and aqueous solubility could be improved by crystalline complex formation.

Materials and methods: We used 42 compounds, and found 9 new propiverine crystalline complexes. The properties and solubility of these complexes were studied using a range of techniques. A taste perception study was carried out using a taste sensor to evaluate the taste masking ability of the crystalline complex formation.

Results: The melting points of the crystalline complexes were higher than that of propiverine. The dissolution rates of the crystalline complexes in aqueous buffer solution (pH 6.8) and in purified water were much faster than that of propiverine. Propiverine salicylic acid crystalline complex had substantially less bitterness than propiverine hydrochloride, which was extremely bitter.

Discussion: The present findings indicated that crystalline complex formation provided an effective approach to enhancing propiverine solubility, and to masking its bitter taste.

Conclusion: Crystalline complex formation represents a useful and valuable technique for the preparation of orally disintegrating tablets and improving patient compliance, even for substances with bitter tastes.  相似文献   


14.
The purpose of this research was to develop an orally disintegrating tablet (ODT) dosage form containing taste-masked beads of clindamycin HCl. Several formulation strategies were evaluated and a taste-masked ODT of clindamycin HCl was prepared without the use of a waxy cushioning agent. Clindamycin HCl (ca. 46% w/w) was coated onto microcrystalline cellulose beads (Cellets® 200) followed by the addition of a taste-masking layer of amino methacrylate copolymer, NF (Eudragit EPO® (EPO)) coating suspension. The efficiency of both the drug coating process and the taste-masking polymer coating process, as well as the taste masking ODTs was determined using potency and drug release analysis. Magnesium stearate was found to be advantageous over talc in improving the efficiency of the EPO coating suspension. A response surface methodology using a Box–Behnken design for the tablets revealed compression force and levels of both disintegrant and talc to be the main factors influencing the ODT properties. Blending of talc to the EPO-coated beads was found to be the most critical factor in ensuring that ODTs disintegrate within 30?s. The optimized ODTs formulation also showed negligible (<0.5%) drug release in 1?min using phosphate buffer, pH 6.8 (which is analogous to the residence time and pH in the oral cavity). By carefully adjusting the levels of coating polymers, the amounts of disintegrant and talc, as well as the compression force, robust ODTs can be obtained to improve pediatric and geriatric patient compliance for clindamycin oral dosage forms.  相似文献   

15.
Context: The bitter taste of drug is masked by the exchange of ionized drugs with counter ions of ion exchange resin, forming “resinate”. Cyclodextrin reduces the unpleasant taste and enhances the drug solubility by encapsulating drug molecules into its central cavity.

Objective: Oral disintegrating tablets (ODTs) using the combination of ion exchange resin and cyclodextrin was developed, to mask the bitter taste and enhance drug dissolution.

Methods: Meloxicam (MX) was selected as a model drug. Formulations containing various forms of MX (free drug, MX-loaded resin or resinate, complexes of MX and 2-hydroxypropyl-β-cyclodextrin (HPβCD) or MX/HPβCD complexes, and a mixture of resinate and MX/HPβCD complexes) were made by direct compression. The ODTs were evaluated for weight variation, thickness, diameter, hardness, friability, disintegration time, wetting time, MX content, MX release, degree of bitter taste and stability.

Results and discussion: The tablet hardness was ~3?kg/in2, and the friability was <1%. Tablets formulated with resinate and the mixture of resinate and MX/HPβCD complexes disintegrated rapidly within 60?s, which is the acceptable limit for ODTs. These results were corresponded to the in vivo disintegration and wetting times. However, only tablets containing the mixture of resinate and MX/HPβCD complexes provided complete MX dissolution and successfully masked the bitter taste. In addition, this tablet was stable at least 6 months.

Conclusions: The combination of ion exchange resin and cyclodextrin could be used in ODTs to mask the bitter taste and enhance the dissolution of drugs that are weakly soluble in water.  相似文献   

16.
Abstract

Context: Gabapentin was selected to formulate oral controlled release dry suspension because of short biological half life of 5–7?h and low bioavailability (60%). Gabapentin is a bitter drug so an attempt was made to mask its taste.

Objective: To formulate and evaluate controlled release dry suspension for reconstitution to increase the bioavailability and to control bitter taste of drug.

Materials and methods: Cyclodextrin based nanosponges were synthesized by previously reported melt method. The nanosponge–drug complexes were characterized by FTIR, DSC and PXRD as well as evaluated for taste and saturation solubility. The complexes were coated on Espheres by a suspension layering technique followed by coating with ethyl cellulose and Eudragit RS-100. A dry powder suspension for reconstitution of the microspheres was formulated and evaluated for taste, redispersibility, in vitro dissolution, sedimentation volume, leaching and pharmacokinetics.

Results and discussion: The complexes showed partial entrapment of drug nanocavities. Significant decrease in solubility (25%) was observed in the complexes than pure drug in different media. The microspheres of nanosponge complexes showed desired controlled release profile for 12?h. Insignificant drug leaching was observed in reconstituted suspension during storage for 7 days at 45?°C/75% RH. Nanosponges effectively masked the taste of Gabapentin and the coating polymers provided controlled release of the drug and enhanced taste masking. The results of in vivo studies showed increase in bioavailability of controlled release suspension by 24.09% as compared to pure drug.

Conclusion: The dry powder suspension loaded with microspheres of nanosponges complexes can be proposed as a suitable controlled release drug delivery for Gabapentin.  相似文献   

17.
18.
The purpose of this study was to evaluate the taste masking potential of novel solid dispersions (SDs) using Eudragit® EPO as the excipient when incorporated into the orally disintegrating tablets (ODTs) for delivering a highly soluble drug with an extremely bitter taste. The pyridostigmine bromides (PB) SDs (PBSDs) were prepared by solvent evaporation–deposition method. The physicochemical properties of PBSDs were investigated by means of differential scanning calorimetry and Fourier transformed infrared spectroscopy. The dissolution test showed that only about 8% of PB was released from PBSDs in the simulated salivary fluid in 30 s. Therefore, PBSDs were considered taste-masked and selected for formulation of PBODTs. A central composite design was employed for process optimization. Multiple linear regression analysis for process optimization revealed that the optimal PBODTs were obtained, when the microcrystalline cellulose and crospovidone were 17.16 and 5.55 (%, w/w), respectively, and the average in vivo disintegration time was 25 s. The bitterness threshold of PB was examined by a sensory test, and the threshold value was set as 3?mg in each tablet. Taste evaluation of PBODTs in 18 volunteers revealed considerable taste masking with bitterness below the threshold value. PBODTs also revealed rapid drug release (around 99%, 2?min) in the simulated gastric fluid. The mean PB plasma concentration–time profiles of PBODTs and that of the commercial tablets were comparable, with closely similar pattern. Bioequivalence assessment results demonstrated that PBODTs and the commercial tablets were bioequivalent. In conclusion, PBODTs are prepared successfully, with taste masking and rapid disintegration in the oral cavity.  相似文献   

19.
Abstract

Objective: Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab).

Materials and methods: Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900?mL 0.1?N HCl medium, 900?mL pH 6.8 phosphate buffer or 900?mL pH 4.5 acetate buffer at 37?±?0.2?°C as dissolution medium.

Results: Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media.

Discussion: Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles.

Conclusion: Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.  相似文献   

20.
Context: Bitter taste, as well as dissolve time, presents a significant challenge for the acceptability of formulations for oral transmucosal drug delivery.

Objective: To characterize a novel sublingual tablet formulation of buprenorphine/naloxone with regards to pharmacokinetics, dissolve time and formulation acceptability.

Methods: Dry mixing techniques were employed to produce a small and fast dissolving buprenorphine/naloxone sublingual tablet formulation, OX219 (Zubsolv®), using sucralose and menthol as sweetener and flavor to mask the bitter taste of the active ingredients. Two cross-over studies were performed in healthy volunteers to evaluate pharmacokinetics, dissolve time and acceptability of OX219 5.7/1.4?mg tablets compared to the commercially available buprenorphine/naloxone formulations Suboxone® tablets and films (8/2?mg).

Results: Buprenorphine exposure was equivalent in OX219 and Suboxone tablets. Sublingual dissolve times were significantly shorter for OX219 than for Suboxone tablets and were similar to Suboxone films. The OX219 formulation received significantly higher subjective ratings for taste and overall acceptability than both Suboxone formulations. OX219 was preferred over Suboxone tablet and film formulations by 77.4% and 88.9% of subjects, respectively.

Conclusions: A sublingual tablet formulation with an improved acceptability has been successfully developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号