共查询到18条相似文献,搜索用时 15 毫秒
1.
Context: Supercritical fluid methods offer an alternative to conventional mixing methods, particularly for heat sensitive drugs and where an organic solvent is undesirable. Objective: To design, develop and construct a unit for the particles from a gas-saturated suspension/solution (PGSS) method and form endogenous progesterone (PGN) dispersion systems using SC-CO 2. Materials and methods: The PGN dispersions were manufactured using three selected excipients: polyethylene glycol (PEG) 400/4000 (50:50), Gelucire 44/14 and D-α-tocopheryl PEG 1000 succinate (TPGS). Semisolid dispersions of PGN prepared by PGSS method were compared to the conventional methods; comelting (CM), cosolvent (CS) and physical mixing (PM). The dispersion systems made were characterized by Raman and Fourier transform infrared (FTIR) spectroscopies, X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), PGN recovery, uniformity and in vitro dissolution, analyzed by high-performance liquid chromatography (HPLC). Results: Raman spectra revealed no changes in the crystalline structure of PGN treated with SC-CO 2 compared to that of untreated PGN. XRPD and FTIR showed the presence of peaks and bands for PGN confirming that PGN has been incorporated well with each individual excipient. All PGN dispersions prepared by the PGSS method resulted in the improvement of PGN dissolution rates compared to that prepared by the conventional methods and untreated PGN after 60 min ( p value?0.05). Conclusion: The novel PGN dispersions prepared by the PGSS method offer the great potential to enhance PGN dissolution rate, reduce preparation time and form stable crystalline dispersion systems over those prepared by conventional methods. 相似文献
2.
Background and objective: Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats. Methods: The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats. Results: The intestinal transport and apparent permeability (Papp) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (Ka), fraction absorbed (Fab) and effective permeability (Peff) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats. Conclusions: Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions. 相似文献
3.
AbstractThe objective of our investigational work was to develop a proliposomal formulation to improve the oral bioavailability of valsartan. Proliposomes were formulated by thin film hydration technique using different ratios of phospholipids:drug:cholesterol. The prepared proliposomes were evaluated for vesicle size, encapsulation efficiency, morphological properties, in vitro drug release, in vitro permeability and in vivo pharmacokinetics. In vitro drug-release studies were performed in simulated gastric fluid (pH 1.2) and purified water using dialysis bag method. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA), Caco-2 monolayer and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague Dawley (SD) rats. Among the proliposomal formulations, F-V was found to have the highest encapsulation efficiency of 95.6?±?2.9% with a vesicle size of 364.1?±?14.9?nm. The in vitro dissolution studies indicated an improved drug release from proliposomal formulation, F-V in comparison to pure drug suspension in both, purified water and pH 1.2 dissolution media after 12?h. Permeability across PAMPA, Caco-2 cell and everted rat intestinal perfusion studies were higher with F-V formulation as compared to pure drug. Following single oral administration of F-V formulation, a relative bioavailability of 202.36% was achieved as compared to pure valsartan. 相似文献
4.
ABSTRACTThe formation of melt dispersion is an effective method of increasing the dissolution rate of poorly soluble drugs, and hence, of improving the bioavailability. The carrier fusion method was used to prepare different dispersion of etodolac using Gelucire 44/14 and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The physical characteristics of the binary systems were determined by differential scanning calorimetry (DSC), infrared spectroscopy (IR). The release rate from the resulting dispersion was determined from dissolution studies by use of USP dissolution apparatus II (paddle method). The dissolution rate of etodolac is increased in all the dispersion systems compared to that of pure drug. A liquid dispersion system of etodolac (20%) and Gelucire 44/14: TPGS blend (80%), in different ratios, was also prepared. The capsule formulation was subjected to stability studies at different temperature and humidity conditions as per ICH guidelines. Physical and chemical properties of the dispersion didn't change during a period of storage at room temperature and at 4°C, 0% RH. It was found that etodolac was chemically stable against the effects of temperature and humidity. However, the relative humidity and storage time exerted an effect on the dissolution behavior of etodolac. The changes in dissolution behavior after storage under conditions of high humidity and temperature might be related to the formation of etodolac microcrystal and to water absorption by the carrier during storage. It is predicted that acceptable shelf-lives should result when moisture-resistant packaging is used for pharmaceutical formulations of this type. 相似文献
5.
Context: Nanosuspensions (NSs) of poorly water-soluble drugs are known to increase the oral bioavailability. Objectives: The purpose of this study was to develop NS of efavirenz (EFV) and to investigate its potential in enhancing the oral bioavailability of EFV. Materials and methods: EFV NS was prepared using the media milling technique. The Box–Behnken design was used for optimization of the factors affecting EFV NS. Sodium lauryl sulfate and PVP K30 were used to stabilize the NS. Freeze-dried NS was completely re-dispersed with double-distilled filtered water. Results: Mean particle size and zeta potential of the optimized NS were found to be 320.4?±?3.62?nm and –32.8?±?0.4 mV, respectively. X-ray diffraction and differential scanning calorimetric analysis indicated no phase transitions. Rate and extent of drug dissolution in the dissolution medium for NS was significantly higher compared to marketed formulation. The parallel artificial membrane permeability assay revealed that NS successfully enhanced the permeation of EFV. Results of in situ absorption studies showed a significant difference in absorption parameters such as Ka, t1/2 and uptake percentages between lyophilized NS and marketed formulation of EFV. Oral bioavailability of EFV in rabbits resulting from NS was increased by 2.19-fold compared to the marketed formulation. Conclusion: Thus, it can be concluded that NS formulation of EFV can provide improved oral bioavailability due to enhanced solubility, dissolution velocity, permeability and hence absorption. 相似文献
6.
Isosorbide dinitrate–polyvinylpyrrolidone (ISDN–PVP) electrospinning fibers were formulated and explored as potentially sublingual membrane. The addition of polyethylene glycol (PEG) to the formulation improved flexibility and reduced fluffiness of the fiber mat. The scanning electron microscopy (SEM) demonstrated that the fibers tended to be cross-linking, and the crosslinking degree increased with the increase of PEG amount. The differential scanning calorimetry (DSC) indicated that ISDN existed in non-crystalline state in the fibers (except at the highest drug content). The infrared spectroscopy suggested that ISDN had better compatibility with the ingredients owing to the hydrogen bonding (or hydrophobic interactions). The fibers were highly favorable for the fabrication of sublingual membrane due to neutral pH, large folding endurance and rapid drug release (complete dissolution within 120 s). The permeation study of ISDN through both dialysis membrane (DM) and porcine sublingual mucosa (SM) were carried out. A significant relationship of drug permeation rate through DM and SM was built up, which indicated that DM could be used to partly simulate SM and assess formulation. The pharmacokinetic study in rats demonstrated that the electrospinning fiber membrane had a higher Cmax and lower Tmax compared to the reference preparation, and the relative bioavailability of the fiber membrane was 151.6%. 相似文献
7.
Reservoir-type ocular inserts were fabricated using sodium alginate containing ciprofloxacin hydrochloride as the core (drug reservoir) that was sandwiched between the Eudragit and/or polyvinylacetate films. Ocular inserts were packaged in aluminium foil and sterilized by gamma radiation. These were tested for sterility as per British Pharmacopoeia (BP). Ocular inserts were evaluated for in vitro release rate studies, microbial efficacy, in vivo release studies, efficacy against induced bacterial conjunctivitis in rabbit's eyes, concentration in the aqueous humor, and stability studies as per the International Conference on Harmonization (ICH) guidelines. Ocular inserts passed the test for sterility. They showed zero-order release of the drug in the in vitro and in vivo release studies over a period of 120 hr. The drug was found to be active against selected microorganisms as was proved by microbial efficacy studies. A high correlation coefficient was found between in vitro and in vivo release rate studies. Better improvement was observed in artificially induced bacterial conjunctivitis in rabbit's eyes, compared with marketed eye drops and placebo. Drug concentration in the aqueous humor was found above Minimum Inhibitory Concentration (MIC-90) against selected microorganisms. Shelf-life of the product was found to be more than 2 years. 相似文献
8.
Isradipine (ISR) is a potent calcium channel blocker with low oral bioavailability due to low aqueous solubility, extensive first-pass metabolism and P-glycoprotein (P-gp)-mediated efflux transport. In the present investigation, an attempt was made to develop isradipine-loaded self-nano emulsifying powders (SNEP) for improved oral delivery. The liquid self-nano emulsifying formulations (L-SNEF/SNEF) of isradipine were developed using vehicles with highest drug solubility, i.e. Labrafil® M 2125 CS as oil phase, Capmul® MCM L8 and Cremophor® EL as surfactant/co-surfactant mixture. The developed formulations revealed desirable characteristics of self-emulsifying system such as nano-size globules ranging from 32.7 to 40.2?nm, rapid emulsification (around 60?s), thermodynamic stability and robustness to dilution. The optimized stable self-nano emulsifying formulation (SNEF 2) was transformed into SNEP using Neusilin US2 (SNEP N) as adsorbent inert carrier, which exhibited similar characteristics of liquid SNEF. The solid state characterization of SNEP N by Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopic studies shown transformation of crystalline drug into amorphous form or molecular state without any chemical interaction. The in vitro dissolution of SNEP N compared to pure drug was indicated by 18-fold increased drug release within 5?min. In vivo pharmacokinetic studies in Wistar rats showed significant improvement of oral bioavailability of isradipine from SNEP N with 3- and 2.5-fold increments in peak drug concentration ( Cmax), area under curve (AUC 0–∞) compared to pure isradipine. In conclusion, these results signify the improved oral delivery of isradipine from developed SNEP. 相似文献
9.
Objective: Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability (28%) resulting from poor aqueous solubility, presystemic metabolism and P-glycoprotein mediated efflux. The present investigation studies the role of lipid nanocarriers in enhancing the OLM bioavailability through oral delivery. Materials and methods: Solid lipid nanoparticles (SLN) were prepared by solvent emulsion-evaporation method. Statistical tools like regression analysis and Pareto charts were used to detect the important factors effecting the formulations. Formulation and process parameters were then optimized using mean effect plot and contour plots. The formulations were characterized for particle size, size distribution, surface charge, percentage of drug entrapped in nanoparticles, drug–excipients interactions, powder X-ray diffraction analysis and drug release in vitro. Results and discussion: The optimized formulation comprised glyceryl monostearate, soya phosphatidylcholine and Tween 80 as lipid, co-emulsifier and surfactant, respectively, with an average particle size of 100?nm, PDI 0.291, zeta potential of ?23.4?mV and 78% entrapment efficiency. Pharmacokinetic evaluation in male Sprague Dawley rats revealed 2.32-fold enhancement in relative bioavailability of drug from SLN when compared to that of OLM plain drug on oral administration. Conclusion: In conclusion, SLN show promising approaches as a vehicle for oral delivery of drugs like OLM. 相似文献
10.
The objective of research was to develop a novel pH-triggered polymeric nanoparticulate in situ gel (NP-ISG) for ophthalmic delivery of acetazolamide (ACZ) to enhance the conjunctival permeation and precorneal residence time of the formulation by overcoming the limitations of protective ocular barriers. Nanoparticles (NP1--NP12) were developed by nanoprecipitation method and evaluated for pharmacotechnical characteristics including transmission electron microscopy. The optimized formulation, NP10 was dispersed in carbopol 934?P to form nanoparticulate in situ gels (NP-ISG1--NP-ISG5). NP-ISG5 was selected as optimized formulation on the basis of gelation ability and residence time. Ex vivo transcorneal permeation study exhibited significantly higher ACZ permeation from NP-ISG5 (74.50?±?2.20?mg/cm 2) and NP10 (93.5?±?2.25?mg/cm 2) than eye drops (20.08?±?3.12?mg/cm 2) and ACZ suspension (16.03?±?2.14). Modified Draize test with zero score indicated nonirritant property of NP-ISG5. Corneal toxicity study revealed no visual signs of tissue damage. Further, NP-ISG5 when tested for hypotensive effect on intraocular pressure (IOP) in rabbits revealed that NP-ISG5 caused significant decrease in IOP ( p?0.05) in comparison to eye drops. Conclusively, NP-ISG5 may offer intensive management of glaucoma via higher permeation, prolonged precorneal residence time and sustained drug release along with higher in vitro efficacy, safety and patient compliance. 相似文献
11.
Diterpenoidal anti-cancer drug andrographolide (AD) was encapsulated into solid lipid nanoparticle (SLN) because of poor aqueous solubility and high lipophilicity. AD-SLNs were prepared by solvent injection method and characterized for droplet size, surface morphology, zeta potential, etc. In vitro drug release was carried out by dialysis-membrane method. A pharmacokinetic study was performed by UPLC/Q-TOF-MS method to determine the maximum plasma concentration ( Cmax), area under the curve (AUC), etc. There was an improvement in Cmax and AUC of AD-SLNs when compared with AD, thereby enhancing the bioavailability of AD. The tmax was increased than that of AD suspension, indicating the sustained release pattern of AD-SLNs. The antitumor activity was carried out on Balb/c mice showing better results with AD-SLNs as compared to AD. Thus, the AD-loaded SLNs would be useful for delivering poorly water-soluble AD with enhanced bioavailability and improved antitumor activity. 相似文献
12.
Purpose: The conventional dosage form of Ketoconazole (KZ) shows poor absorption due to rapid gastric emptying. Chitosan based mucoadhesive nanoparticles (NPs) of KZ were developed to efficiently release drug at its absorption window i.e. stomach and the site of action i.e. esophagus. Method: The NPs were prepared by ionic gelation method. Concentration of polymer, cross-linking agent and ratio of drug/polymer as well as polymer/cross linking agent were optimized. Results: NPs had 69.16?±?5.91% mucin binding efficiency, particle size of 382.6?±?2.384?nm, ζ potential of +48.1?mv and entrapment efficiency of 59.84 ± 1.088%. DSC thermogram indicated absence of any drug polymer interaction. The drug release was by controlled, non-fickian diffusion mechanism. Ex vivo diffusion studies were performed by emptying the stomach contents after 2?h to simulate in vivo gastric emptying. The results showed that drug diffusion from the solution across stomach mucosa stopped after emptying whereas that from the NPs continued upto 5?h. Hence we could conclude that the NPs must have adhered to the stomach mucosa and thereby would have been retained at this absorption site even after gastric emptying. Conclusion: The orally delivered KZ loaded mucoadhesive NPs can be used as an efficient carrier for delivering drug at its absorption window i.e. the stomach and the site of action i.e. esophagus even after gastric emptying. 相似文献
13.
Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93–409.86?nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97?±?0.91?mg/cm 2) and drug flux (0.19?±?0.05?mg/cm 2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin. 相似文献
14.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration. Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies. Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia. Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats. 相似文献
15.
Objective: Design chitosan based nanoparticles for tenofovir disoproxil fumarate (TDF) with the purpose of enhancing its oral absorption. Significance: TDF is a prodrug that has limited intestinal absorption because of its susceptibility to gut wall esterases. Hence, design of chitosan based polymeric novel nanocarrier systems can protect TDF from getting metabolized and also enhance the oral absorption. Methods: The nanoparticles were prepared using the ionic gelation technique. The factors impacting the particle size and entrapment efficiency of the nanoparticles were evaluated using design of experiments approach. The optimized nanoparticles were characterized and evaluated for their ability to protect TDF from esterase metabolism. The nanoparticles were then studied for the involvement of active transport in their uptake during the oral absorption process. Further, in vivo pharmacokinetic studies were carried out for the designed nanoparticles. Results: The application of design of experiments in the optimization process was useful to determine the critical parameters and evaluate their interaction effects. The optimized nanoparticles had a particle size of 156?±?5?nm with an entrapment efficiency of 48.2?±?1%. The nanoparticles were well characterized and provided metabolic protection for TDF in the presence of intestinal esterases. The nanoparticles were able to increase the AUC of tenofovir by 380%. The active uptake mechanisms mainly involving clathrin-mediated uptake played a key role in increasing the oral absorption of tenofovir. Conclusions: These results show the ability of the designed chitosan based nanoparticles in enhancing the oral absorption of TDF along the oral route by utilizing the active endocytic uptake pathways. 相似文献
16.
Objective: The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan. Methods: Insulin nanoparticles were prepared from methylated N-(4- N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined. Results: Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24?h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared from quaternized aromatic derivatives of chitosan. In vivo data showed significantly higher insulin intestinal absorption in nanoparticles prepared from methylated N-(4- N, N-dimethylaminobenzyl) chitosan nanoparticles compared to trimethyl chitosan. Conclusion: These data obtained demonstrated that as the result of optimized physico-chemical properties, drug release rate, cytotoxicity profile, ex vivo permeation enhancement and increased in vivo absorption, nanoparticles prepared from N-aryl derivatives of chitosan can be considered as valuable method for the oral delivery of insulin. 相似文献
17.
Objective: The present investigation was aimed at optimizing of estradiol (E2) loaded l-amino acid derivatives organogel formulations resulting in improved the high initial release problems and sustained release of E2. Methods: The visco-elastic properties of blank organogels were measured by rheometer. The E2 organogel formulations were optimized using a central composite design. Also, the effect of gelator structure and composition of the gel formulations on release behavior ( in vitro and in vivo) had been studied. Results: The change of the gelator structure could affect significantly the stiffness of the implants. The release behavior of gel without N-Methyl-2-pyrrolidinone (NMP) was controlled by gel corrosion only. While the drug release of the gel with NMP was controlled by both corrosion and diffusion. The high initial release problems of the organogels were improved by optimizing the formulations. The system consisting by N-Lauroyl l-lysine methyl ester (LLM) derivative in the oil indicated the lowest initial drug release, showed a much lower blood drug level and maintained a steady state for nearly 1 month. Conclusion: Organogels based on l-lysine methyl ester derivative were ideal carriers for long-term parenteral administration of E2. 相似文献
18.
Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability. 相似文献
|