首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, phytochemicals-mediated rapid, stable and eco-friendly synthesis of gold nanoparticles (GNPs) using Pterocarpus santalinus L. (Red Sanders) bark extract is reported. The powerful characteristics of different phytochemicals present in P. santalinus L. bark prompted us to determine their efficacy in the bio-reduction of gold chloride trihydrate to the corresponding GNPs. The biosynthesis of GNPs was investigated at the physiological condition (pH?=?7.4). The synthesized GNPs were characterized by UV–visible spectroscopy by measuring the peak in the range of 400–700?nm. The GNPs synthesized at physiological conditions revealed surface plasmon resonance (SPR) at 545?nm. The crystalline nature of GNPs was confirmed by using x-ray diffraction (XRD), and the functional groups adhered on the surface of the GNPs were analyzed by Fourier Transform Infrared spectroscopy (FTIR). Transmission Electron Microscopy (TEM) analysis showed spherical GNPs in the size range of 13–26?nm. The synthesized GNPs exhibited antibacterial activity against Gram-positive and Gram-negative bacterial strains.  相似文献   

2.
In this study, an eco‐friendly biosynthesis of stable gold nanoparticles (T‐GNPs) was carried out using different concentrations of tomato juice (nutraceuticals) as a reducing agent and tetrachloroauric acid as a metal precursor to explore their potential application in cancer therapeutics. The synthesis of T‐GNPs was monitored by UV‐visible absorption spectroscopy, which unveiled their formation by exhibiting the typical surface plasmon absorption maxima at 522 nm. The size of T‐GNPs was found to be 10.86 ± 0.6 nm. T‐GNPs were characterised by dynamic light scattering, zeta potential, transmission electron microscopy analysis and Fourier transform infrared spectroscopy. T‐GNPs were further investigated for their anti‐cancer activity against human lung carcinoma cell line (A 549) and human cervical cancer cell line wherein the IC50 values were found to be 0.286 and 0.200 mM, respectively. T‐GNPs inhibited the growth of cancer cells by generating ROS and inducing apoptosis. T‐GNPs were found highly effective by virtue of their size, metallic property and capping molecules. Thus, this study opens up the prospects of using nutraceutical (tomato juice) as nutratherapeutic agent (T‐GNPs) against critical diseases like lung cancer and cervical cancer.Inspec keywords: gold, nanoparticles, particle size, cancer, ultraviolet spectra, visible spectra, electrokinetic effects, transmission electron microscopy, Fourier transform infrared spectra, cellular biophysics, spectrochemical analysis, nanomedicine, nanofabricationOther keywords: tomato‐mediated synthesised gold nanoparticles, tomato juice, reducing agent, tetrachloroauric acid, cancer therapeutics, UV‐visible absorption spectroscopy, surface plasmon absorption, dynamic light scattering, zeta potential, transmission electron microscopy analysis, Fourier transform infrared spectroscopy, human lung carcinoma cell line, anticancer activity, human cervical cancer cell line, nutratherapeutic agent, lung cancer, Au  相似文献   

3.
Negi DP  Chanu TI 《Nanotechnology》2008,19(46):465503
We present a novel method for the selective detection of cysteine, a sulfur-containing amino acid, which plays a crucial role in many important biological functions such as protein folding. Surface-modified colloidal CdS nanoparticles have been used as a fluorescent probe to selectively detect cysteine in the presence of other amino acids in the micromolar concentration range. Cysteine quenches the emission of CdS in the 0.5-10?μM concentration range, whereas the other amino acids do not affect its emission. Among the other amino acids, histidine is most efficient in quenching the emission of the CdS nanoparticles. The sulfur atom of cysteine plays a crucial role in the quenching process in the 0.5-10?μM concentration range. Cysteine is believed to quench the emission of the CdS nanoparticles by binding to their surface via its negatively charged sulfur atom. This method can potentially be applied for its detection in biological samples.  相似文献   

4.
A simple one-step method for the electrochemical deposition of gold nanoparticles (GNPs) onto bare indium tin oxide film coated glass substrate without any template or surfactant was investigated. The effect of electrolysis conditions such as potential range, temperature, concentration and deposition cycles were examined. The connectivity of GNPs was analyzed by UV-Vis absorption spectroscopy and scanning electron microscopy. The nanoparticles were found to connect in pairs or to coalesce in larger numbers. The twin GNPs display a transverse and a longitudinal localized surface plasmon resonance (LSPR) band, which is similar to that of gold nanorods. The presence of longitudinal LSPR band correlates with high refractive index sensitivity. Conjugation of the twin-linked GNPs with albumin bovine serum-biotin was employed for the detection of streptavidin as a model based on the specific binding affinity in biotin/streptavidin pairs. The spectrophotometric sensor showed concentration-dependent binding for streptavidin.  相似文献   

5.
Study of the interaction between gold nanoparticles and a series of amino acids is reported in this paper. Amino acids with thiol, amine, or hydroxyl groups in their side chains are proven to make gold nanoparticles self-assemble under certain conditions. There is a progression of the effect on self-assembly of gold nanoparticles from hydroxyl < amine < thiol. Meanwhile, concentration of amino acids and the pH value of the solution have been found to be important for amino acids to exert the interesting effect on self-assembly of the nanoparticles.  相似文献   

6.
This paper describes the photosynthesis of gold nanoparticles (GNPs) in the presence of bovine serum albumin (BSA). The concentration of NaAuCl4 and the relative ratio of NaAuCl4 to BSA are important parameters for controlling the size of the GNPs. We prepared GNPs having average diameters ranging from 7 to 50 nm by illumination (Hg-Xe lamp) of phosphate-buffered solutions (pH 3.0-11.0) containing 1 mM NaAuCl4 and 10 microM BSA for 9 h. The size distribution of the GNPs synthesized at pH 7.0 is narrower relative to that of those prepared at other values of pH. Based on the observation that there are no GNPs formed at 25 degrees C in the absence of either BSA or illumination, we conclude that photolytic reduction is the main mechanism for the formation of the GNPs and that BSA acts as a capping agent to stabilize the as-synthesized GNPs. In addition to BSA, several other proteins, such as beta-casein, conalbumin, hemoglobin, beta-lactoglobulin, lysozyme, myoglobin, ovalbumin, pepsin, and trypsinogen play the same role.  相似文献   

7.
We have successfully controlled the size and shape of gold nanoparticles (GNPs) through a one-step bio-assisted procedure by using bovine serum albumin (BSA) protein as both reducing and stabilizing agent. We found that the growing process of GNPs can be directly manipulated by simply controlling the BSA concentration in solution and the reaction temperature. The GNPs formation was followed both experimentally by UV–vis–NIR spectroscopy and transmission electron microscopy (TEM) and theoretically by finite difference time domain (FDTD) simulations. The surface plasmon resonance of as-prepared GNPs suits the needs of many biological applications.  相似文献   

8.
This article reports the environmentally benign synthesis of gold nanoparticles (GNPs) using methanol extract of Azolla microphylla as the stabilizing and reducing agent. The GNPs were characterized by UV-vis spectrophotometry and FTIR, and the morphological characteristics were analyzed by XRD, FESEM-EDX and HRTEM. The GNPs could be formed in very short time, even in less than 30 min. The nanoparticles measured by UV-spectrophotometer demonstrated a peak at 540 nm corresponding to surface plasmon resonance spectra, and the peaks showed by FTIR suggested the presence of organic biomolecules on the surface of the GNPs. XRD results confirmed the crystalline nature of the GNPs, and FESEM-EDX and HRTEM analyses had been performed in the size ranges of 17-40nm and 1.25-17.5nm respectively. The synthesized GNPs showed excellent antioxidant activity. This study shows the feasibility of using plant sources for the biosynthesis of GNPs.  相似文献   

9.
Chen YS  Hung YC  Chen K  Huang GS 《Nanotechnology》2008,19(49):495502
Since the existence of nanoparticles in our environment has already attracted considerable attention due to their possible toxic impact on biological systems, the field detection of nanoparticles is becoming a technology that will be much in need. We have constructed a piezoelectric sensor with an antibody-coated electrode. The antiserum can bind gold nanoparticles with a high degree of selectivity and sensitivity. The biosensor thus constructed can detect 4, 5, or 6?nm gold nanoparticles (GNPs) depending on the coated antiserum. The sensitivity for the detection of 5?nm GNPs was 10.3 ± 0.9?ng?Hz(-1), with the low limit of detection at 5.5?ng. A quartz crystal microbalance (QCM) sensor was capable of detecting GNPs and other types of nanoparticle, such as ZnO, or Fe(3)O(4). The current study provides, for the first time, a platform for detecting nanoparticles in a convenient, economical manner.  相似文献   

10.
Fabrication of a hybrid consists of gold nanoparticles and multi walled carbon nanotubes (MWCNTs) with the help of poly (amino acid) was investigated. Poly(acryloyl beta-alanine) was synthesized by precipitation polymerization in tetrahydrofuran. The polymers were used to form hybrids with MWCNTs in aqueous media. Subsequently, the polymer functionalized MWCNTs were fabricated by in situ formed gold nanoparticles. The fabrication by gold nanoparticles was confirmed by transmission electron microscopic analyses. The fabrication was attempted with different concentrations of lithium auric chloride solutions in the range of 0.1-1.2 mM in water. The lower concentration of the gold precursor solution resulted in the formation and attachment of gold nanoparticles without aggregation while the higher concentration above 1.0 mM led to the aggregation of gold nanoparticles. The gold nanoparticles were observed only on the surface of MWCNTs and none was in the bulk aqueous phase.  相似文献   

11.
The interaction between gold nanoparticles (GNPs) and bovine haemoglobin (BHb) was studied by ultraviolet-visible (UV-Vis) absorption, circular dichroism (CD) and fluorescence spectroscopic techniques. The UV-Vis absorption spectrum demonstrated that there was interaction between GNPs and BHb, but no direct interaction between GNPs and haem groups of BHb. The fluorescence data revealed that GNPs effectively quenched the intrinsic fluorescence of BHb via static quenching. The binding of GNPs to BHb occurred at a single site. The binding process was a spontaneous molecular interaction procedure, in which hydrophobic force and hydrogen bonds played a major role. The alternations of protein secondary structure in the presence of GNPs were also determined by CD spectroscopy. This work is helpful to understand the interaction mechanism of GNPs with haemoglobin, which can guide the applications of GNPs in biomedicine.  相似文献   

12.
Gold nanoparticles (GNPs) with a monolayer of peptides were synthesized as a potential tumour activated cancer drug delivery system. The prodrug system was achieved by the attachment of two varying lengths of peptides to GNPs: An 18 amino acid peptide sequence encompassing a shorter fluorescent labelled (coumarin) six amino acid peptide sequence. The longer peptide chain included the sequence D-AFK that is selectively cleavable by the over-expression of proteases in the vicinity of cancer cells. The protease-mediated exposure of the coumarin was demonstrated by the incubation of peptide capped GNPs with adenocarcinomic human alveolar basal epithelial A549 cells and madin-darby bovine kidney epithelial cells. Confocal laser scanning microscopy studies revealed enhanced fluorescence emission intensities in the cancer cell line as compared to the intensity exhibited by the healthy cell line. This work suggests that GNPs functionalised with a cytotoxic agent or fluorophore encapsulated by longer peptide strands may find useful applications for development of GNPs with therapeutic or diagnostic studies.  相似文献   

13.
Use of biologically modified gold nanoparticles (GNPs) as molecular vehicle to ferry potential anti-cancer drug berberine hydrochloride (BHC) using folic acid (FA) as targeting molecule is reported in this work. A tropical fruit peel, Trapa bispinosa is used to fabricate highly monodispersed GNPs, passivated with essential functional groups which were used as linkers to attach FA and BHC via amide linkage. Flocculation Parameter (FP) of biologically synthesized GNPs was calculated under different salt concentrations which were found to be very ideal under a physiological condition. Various statistical models were used to find drug release profile out of which Higuchi was found to be the most ideal. GNP–FA–BHC complexes were found to be active against folic acid expressing HeLa cells.  相似文献   

14.
纳米金与细胞相互作用机理的蛋白质组学研究   总被引:1,自引:0,他引:1  
吕晓迎  瞿颖华  杨雅敏  黄炎 《功能材料》2011,42(6):1016-1020
应用蛋白质组学结合生物信息学方法研究纳米金与人皮肤成纤维细胞(HDF-f )的作用机理.首先采用柠檬酸钠还原氛金酸法制备20nm的纳米金,然后应用MTT法和流式细胞术评价纳米金的细胞毒性及对细胞周期和细胞凋亡的影响.接着应用蛋白质组学技术和生物信息学方法筛选纳米金作用后细胞发生差异表达的蛋白质并进行基因本体论分析.MT...  相似文献   

15.
Biosynthesis of gold nanoparticles (AuNPs) was obtained by a simple chemical reduction method using a plant-derived aglycone flavonoid, quercetin, as a reducing agent. The aqueous chloroauric acid when exposed to quercetin was reduced and converted to AuNPs in the size range from 20 to 45?nm. AuNPs were characterised by UV–visual spectroscopy, transmission electron microscopy, atomic force microscopy and dynamic light scattering method. These quercetin-mediated AuNPs have shown excellent stability for more than 30 days at 2–8°C. These quercetin-stabilised AuNPs will have an enormous potential for further conjugation studies since no other external stabilising agent is used.  相似文献   

16.
There is no optimal imaging method for the detection of unknown infectious foci in some diseases. This study introduces a novel method in X‐ray imaging of infection foci due to Staphylococcus aureus by developing a contrast agent based on gold nanoparticles (GNPs). GNPs in spherical shape were synthesised by the reduction of tetrachloroauric acid with sodium citrate. Then gentamicin was bound directly to citrate functionalised GNPs and the complex was stabilised by polyethylene glycol. The interaction of gentamicin with GNPs was confirmed by ultraviolet–visible and Fourier transform infrared spectroscopies. The stability of complex was studied in human blood up to 6 h. The stability of conjugate was found to be high in human blood with no aggregation. The biodistribution study showed localisation of gentamicin–GNPs conjugate at the site of Staphylococcal infection. The infection site was properly visualised in X‐ray images in mouse model using the gentamicin–GNPs conjugate as a contrast agent. The results demonstrated that one may consider the potential of new nanodrug as a contrast agent for X‐ray imaging of infection foci in human beings which needs more investigations.Inspec keywords: drugs, nanomedicine, nanoparticles, nanofabrication, diagnostic radiography, microorganisms, diseases, polymers, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, goldOther keywords: gentamicin‐gold nanoparticle conjugate, contrast agent, X‐ray imaging, Staphylococcus aureus, disease, tetrachloroauric acid reduction, sodium citrate, polyethylene glycol, ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, human blood, Staphylococcal infection, X‐ray images, murine model, nanodrug  相似文献   

17.
A method using gold nanoparticles (GNPs) to enhance fiber optic interferometry (GNPFOI) for immune-sensing is reported in this paper. It is suggested that an enlarged index mismatch and an elongated optical path by GNPs conjugated on recognition proteins will contribute most to signal enhancement in the interference fringe shift. Theoretical and experimental results show that the interference fringe shift is linearly related to both the amount and size of the GNPs binding on the sensor surface. The detected signal for 30?nm GNPs can reach a lowest detection limit of 18?pM (10(10)?particles?ml(-1)). Immune-sensing for rabbit IgG as the antigen to anti-rabbit IgG has been demonstrated and a detection cycle has been completed by elution buffer for surface regeneration. The repeatability of the immune-sensing on one GNPFOI sensor has also been verified by three identical cycles, and the detection limit for 13?nm GNPs conjugated anti-rabbit IgG reaches 0.17?nM (~25.5?ng?ml(-1)). The sensory mechanism has the potential to be engineered on the tip of a needle-type micro-device, which would allow it to monitor immune recognition signals in the future.  相似文献   

18.
Green synthesis of gold nanoparticles (GNPs) has received substantial attention, because nanoparticles are produced in an eco‐friendly way using biomolecules present in plant extracts in a single step reaction. This research article highlights GNPs obtained using shade‐dried leaf extracts of Millettia pinnata (L.) with aqueous auric chloride (HAuCl4) at ambient temperature. In the present study, GNPs with average particle size 37 nm in size were fabricated. Furthermore, the synthesis method to obtain stable and monodispersed GNPs was advanced by optimising enzyme concentration 100 μg/ml, pH 5.4, substrate concentration 0.45 mM and 12 h time of reaction. The confirmation of GNPs formation and characterisation was followed by UV‐vis‐absorption spectroscopy, dynamic light scattering (DLS), and zeta potential (ZP) for the analysis of shape, size, and stability, respectively. TEM images and powder XRD revealed the GNPs synthesis of spherical‐shaped nanoparticles in the face‐centred cubic arrangement. Cytotoxicity of GNPs was studied against A549 lung cancer cells with IC50 14.76 μg/ml and found lower as compared to doxorubicin IC50 11.23 μg/ml but significant enough to be used as a vehicle GNPs produced using green source can be used as significant therapeutic agents and drug delivery carriers.Inspec keywords: nanomedicine, molecular biophysics, cancer, electrokinetic effects, pH, transmission electron microscopy, toxicology, gold, cellular biophysics, X‐ray diffraction, lung, biomedical materials, nanofabrication, nanoparticles, particle size, enzymes, visible spectra, ultraviolet spectra, light scattering, biochemistryOther keywords: method development, optimised green synthesis, gold nanoparticles, millettia pinnata, nonsmall cell lung cancer cell lines, plant extracts, single step reaction, shade‐dried leaf extracts, aqueous auric chloride, synthesis method, stable GNPs, monodispersed GNPs, spherical‐shaped nanoparticles, A549 lung cancer cells, green source, particle size, enzyme concentration, substrate concentration, biomolecules, reaction time, UV‐visible‐absorption spectroscopy, dynamic light scattering, zeta potential, TEM images, powder XRD, face‐centred cubic arrangement, cytotoxicity, pH, therapeutic agents, drug delivery carriers, time 12.0 hour, Au  相似文献   

19.
Recent researches have largely been focused on chitosan, which is deacetylated chitin, the most abundant natural polysaccharide after cellulose. In this paper, we report the fabrication of gold nanoparticles (GNPs) by UV photoactivation in the presence of biopolymeric chitosan and the tracing of the gold salt solution aging. Detailed UV-visible spectroscopy study witnessed the evolution of the surface plasmon resonance (SPR) adsorption during the GNP growth. The effect of chitosan in aqueous solution for the GNP preparation was investigated in detail. The results indicated the size and distribution of GNPs could be controlled over by altering the concentration of chitosan, and the GNP growth during aging was a chitosan-mediated autocatalytic process. Fourier transform infrared spectroscopy (FTIR) showed the hydroxyl in molecular chitosan was oxidized to carbonyl groups in the fabrication of GNPs after aging and nitrogen atoms are the main sites for the complexation of chitosan with Au atoms. Our synthesis method in the present way can be used to form self-assemble monolayers of GNPs and fabricate biosensors based on surface plasmon resonance effect.  相似文献   

20.
Lin SY  Chen CH  Lin MC  Hsu HF 《Analytical chemistry》2005,77(15):4821-4828
Reported here is a cooperative effect that the sensing efficiency of the active group on gold nanoparticles (GNPs) can be significantly influenced by another proximal functional group. We previously developed a visual sensing scheme for K+ by 15-crown-5-CH2O(CH2)12SH functionalized GNPs in aqueous matrix. Upon adding K+, the GNP solution changes from red to blue. Such a transform is triggered by a 2-to-1 sandwich complexation of crown to K+, resulting in the red shift of surface plasmon absorption due to GNP aggregation. Herein, we discover that introducing a second functionality, thioctic acid (TA), onto GNPs significantly affects the sensing efficiency of crown moieties (15-crown-5-CH2O(CH2)n)SH and 12-crown-4-CH2O(CH2)nSH, where n = 4, 8, and 12). The rate constant of K+ recognition by TA- and 15-crown-5-CH2O(CH2)4S-bifunctionalized GNPs is more than 4 orders of magnitude faster than the others containing longer methylene chains. The same chain-length dependence is also found in the case of Na+ sensing by 12-crown-4 functionalized GNPs. The discrepancy in sensing performance is attributed to a cooperative effect that the negatively charged carboxylate of TA may preorganize the crown moiety for K+ recognition. This method is applied to measure K+ and Na+ in human urine by UV-visible spectrometry. By adjusting the concentrations of GNPs, the dynamic ranges tuned for K+ and Na+ are, respectively, 6.25 microM-1.12 mM and 0.156-4.00 mM, suitable for real samples pretreated simply by 10-fold dilution. The results ([K+] = 20.3 mM, [Na+] = 45.1 mM) agree with those obtained from ICP-AES ([K+] = 19.8 mM, [Na+] = 43.8 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号