首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Microalgae for biodiesel production and other applications: A review   总被引:18,自引:0,他引:18  
Sustainable production of renewable energy is being hotly debated globally since it is increasingly understood that first generation biofuels, primarily produced from food crops and mostly oil seeds are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-food feedstocks such as microalgae, which potentially offer greatest opportunities in the longer term. This paper reviews the current status of microalgae use for biodiesel production, including their cultivation, harvesting, and processing. The microalgae species most used for biodiesel production are presented and their main advantages described in comparison with other available biodiesel feedstocks. The various aspects associated with the design of microalgae production units are described, giving an overview of the current state of development of algae cultivation systems (photo-bioreactors and open ponds). Other potential applications and products from microalgae are also presented such as for biological sequestration of CO2, wastewater treatment, in human health, as food additive, and for aquaculture.  相似文献   

2.
It is increasing clear that biofuels can be a viable source of renewable energy in contrast to the finite nature, geopolitical instability, and deleterious global effects of fossil fuel energy. Collectively, biofuels include any energy-enriched chemicals generated directly through the biological processes or derived from the chemical conversion from biomass of prior living organisms. Predominantly, biofuels are produced from photosynthetic organisms such as photosynthetic bacteria, micro- and macro-algae and vascular land plants. The primary products of biofuel may be in a gas, liquid, or solid form. These products can be further converted by biochemical, physical, and thermochemical methods. Biofuels can be classified into two categories: primary and secondary biofuels. The primary biofuels are directly produced from burning woody or cellulosic plant material and dry animal waste. The secondary biofuels can be classified into three generations that are each indirectly generated from plant and animal material. The first generation of biofuels is ethanol derived from food crops rich in starch or biodiesel taken from waste animal fats such as cooking grease. The second generation is bioethanol derived from non-food cellulosic biomass and biodiesel taken from oil-rich plant seed such as soybean or jatropha. The third generation is the biofuels generated from cyanobacterial, microalgae and other microbes, which is the most promising approach to meet the global energy demands. In this review, we present the recent progresses including challenges and opportunities in microbial biofuels production as well as the potential applications of microalgae as a platform of biomass production. Future research endeavors in biofuel production should be placed on the search of novel biofuel production species, optimization and improvement of culture conditions, genetic engineering of biofuel-producing species, complete understanding of the biofuel production mechanisms, and effective techniques for mass cultivation of microorganisms.  相似文献   

3.
4.
Prospects of biodiesel production from microalgae in India   总被引:3,自引:0,他引:3  
Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO2 to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India.  相似文献   

5.
Iran’s diversity of terrain and climate enables cultivation of a variety of energy crops suitable for liquid biofuels production. In Iran, the easily and readily available biofuel feedstock today for production of bioethanol is molasses from sugar cane and sugar beet. There is also about 17.86 million tons of crops waste from which nearly 5 billion liters of bioethanol could be produced annually. This amount of bioethanol is sufficient to carry out E10 for spark ignition engine vehicles in Iran by 2026. There is also enormous potential for cultivation of energy plants such as cellulosic materials and algae. Iran has 7%of its area covered with forest products which are suitable sources for liquid biofuels such bioethanol and biodiesel. Iran also has a long tradition of fishing in Caspian Sea and Persian Gulf with about 3200 km coastline and on inland rivers. The produced fish oil and other plant oils such as palm tree, jatropha, castor plant and algae are suitable biodiesel feedstock. Out of 1.5 million tons of edible cooking oil consumed in Iran annually, about 20% of it can be considered as waste, which is suitable biodiesel feedstock.This quantity along with the other possible potential feedstock are favorable sources to carry out B10 step by step until 2026.  相似文献   

6.
Advanced biofuels, such as those obtained from microalgae, are widely accepted as better choices for achieving goals of incorporating renewables and non-food fuel sources into the transportation sector, and for overcoming land use issues due to biofuel crops. Main challenges are currently the feasibility of large-scale commercialization of microalgae biofuels, since there are still some technical problems to overcome (e.g. the high energy consumption associated with biomass processing) and the majority of economic and financial analyses are based on pilot-scale projects. Therefore, this article presents the results of a Delphi study aiming to identify the main obstacles and most critical issues affecting the potential of large-scale commercialization of microalgae biodiesel and its incorporation into the fuel market. According to the authors' knowledge, this is the first Delphi study with this objective. The respondents are worldwide market specialists in the survey themes that ranged from biofuels economics to their environmental sustainability. One of the key findings is that most of the experts believe that production of microalgae biofuels will achieve its full commercial scale until 2020, and that from 2021 till 2030 it could represent from 1% to 5% of the worldwide fuel consumption. The study results also showed that environmental issues are where expert opinion differs more.  相似文献   

7.
Algae can be converted directly into energy, such as biodiesel, bioethanol and biomethanol and therefore can be a source of renewable energy. There is a growing interest for biodiesel production from algae because of its higher yield non-edible oil production and its fast growth that does not compete for land with food production. About 50% of algae weight is oil that this lipid oil can be used to make biodiesel. Algae is capable of yielding 30 times more oil per acre than the crops currently used in biodiesel production. Processes for biodiesel production from algae-oil are similar to food and non-food crops derived biodiesel processes. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Iran has high biofuel energy potential. The Iranian government is considerable attention to the utilization of renewable energy, especially biofuels. Iran has enough land in order to algae cultivation that does not compete with food production. A salt lake (Lake Orumieh) in Iran's West Azarbaijan province, Maharlu salt lake in Iran's Fars province, Qom salt lake in Iran's Qom province have given rise to a new species of algae for biofuel. Algae are frequent in the shallow-marine lime stones in Zagros Mountains in north of Fars province. Greenish blooms of algae can be seen in the Persian Gulf and Caspian Sea, south and north of Iran respectively. This study presents a brief introduction to the resource, status and prospect of algae as a sustainable energy source for biodiesel production in Iran. The main advantages of using algae for biodiesel production in Iran are described.  相似文献   

8.
This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30–50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels.  相似文献   

9.
The land potential for producing biomass for bioenergy purposes has been highly debated in recent years. The present paper analyses the possibilities and consequences for land use and agricultural production of biofuel production in Denmark based on domestic wheat and rape under specific scenario conditions for the period 2010–2030. The potential is assessed for a situation where policy targets for renewable energy carriers in the transport sector is reached using biofuels, and where second generation ethanol increasingly substitutes first generation ethanol.Three scenarios are developed and evaluated: a baseline, an alternative scenario allowing continuous growth in the now dominant livestock branch and a biofuel scenario assuming that efforts to achieve self-sufficiency in biofuel displaces part of the domestic production of fodder.Results show that the biofuel demand could be met in 2020; but only if current rape oil production is used to satisfy local bio-diesel demand. It would also imply that the Danish bio-diesel export currently supplying a minor part of the German fuel market would seize. In 2030, however, only about 60 percent of the biofuel demand would be covered by self-sufficiency. If biofuels were to displace animal production to make up for this, a reduction of the pig production between 10 and 20 percent would result. Efficiency increases across production branches would allow the animal production to continue un-affected if about half of the rape oil produced for other purposes is utilized.  相似文献   

10.
Thailand is Southeast Asia's largest promoter of biofuels. Although, Thailand promotes the use of biofuels, it has yet to achieve its policy targets. This paper focuses on the first generation biofuel development in Thailand and examines the perceptions of seven stakeholder groups to guide further policy development. These stakeholders were feedstock producers, biofuel producers, government agencies, car manufacturers, oil companies, non-profit organizations and end users. It combines a Strengths, Weakness, Opportunities and Threats (SWOT) framework with an Analytical Hierarchy Process (AHP) framework and a TOWS Matrix for analysis of stakeholder's perceptions to propose priorities for policy development. Five policies were of high priority for development of biofuel. These are: (1) promoting biofuel production and use in long term through government policies, (2) revising government regulations to allow sale of biofuel products to other domestic industries while keeping retail prices of blended biofuels below those of regular ethanol and biodiesel, (3) improving farm management and promoting contract farming, (4) expanding cultivation area and yield without affecting food production and environmental sustainability, and (5) balancing biofuel feedstock use between the food and energy industries.  相似文献   

11.
Increasing energy consumption has exerted great pressure on natural resources; this has led to a move towards sustainable energy resources to improve security of supply and to reduce greenhouse gas emissions. However, the rush to the cure may have been made in haste. Biofuels in particular, have a bad press both in terms of competition with good agricultural land for food, and also in terms of the associated energy balance with the whole life cycle analysis of the biofuel system. The emphasis is now very much on sustainable biofuel production; biofuels from wastes and lignocellulosic material are now seen as good sustainable biofuels that affect significantly better greenhouse gas balances as compared with first generation biofuels. Ireland has a significant resource of organic waste that could be a potential source of energy through anaerobic digestion. Ireland has 8% of the cattle population of the EU with less than 1% of the human population; as a result 91% of agricultural land in Ireland is under grass. Residues such as slurries and slaughter waste together with energy crops such as grass have an excellent potential to produce biogas that may be upgraded to biomethane. This biomethane may be used as a natural gas substitute; bio-compressed natural gas may then be an avenue for a biofuel strategy. It is estimated that a maximum potential of 33% of natural gas may be substituted by 2020 with a practical obtainable level of 7.5% estimated. Together with biodiesel from residues the practical obtainable level of this strategy may effect greater than a 5% substitution by energy of transport. The residues considered in this strategy to produce biofuel (excluding grass) have the potential to save 93,000 ha of agricultural land (23% of Irish arable land) when compared to a rapeseed biodiesel strategy.  相似文献   

12.
Production of bioethanol is winning support from masses because it is a workable choice to solve the problems associated with the fluctuating prices of crude petroleum oil, climatic change, and reducing non‐renewable fuel reserves. First‐generation biofuels are produced directly from food crops. The biofuel (bioethanol, biodiesel) is ultimately derived from the starch, sugar, animal fats, and vegetable oil that these crops provide. It is important to note that the structure of the biofuel itself does not change between generations, but rather the source from which the fuel is derived changes. Corn, wheat, and sugar cane are the most commonly used first‐generation bioethanol feed stocks. Lignocellulosic materials are used as a feed stock for the production of second‐generation bioethanol. The major production steps are (1) delignification, (2) depolymerisation, and (3) fermentation. Agricultural residues are waste materials produced through the processing of agricultural crops. The main reason to use of these agricultural residues to produce bioethanol is to convert waste to value added products. The main challenges are the low yield of the cellulosic hydrolysis process due to the presence of lignin and hemicellulose with cellulose. Pretreatments of lignocellulosic materials to remove lignin and hemicellulose are the techniques used to enhance the hydrolysis. Present review article comprehensively discusses the different pretreatment methods of delignification for ethanol production. Published literature on pretreatments from 1982 to 2018 has been studied. Perspectives, gaps in studies, and recommendations are given to fully describe implementation of eight prominent pretreatments (milling, pyrolysis, organic solvents, steam explosion, hot water treatments, ozonolysis, enzymatic delignification, and genetic modification) for future research. The energy and environmental features of lignocellulosic materials are elaborated to show a sustainable aspect of second‐generation biofuel. It was felt necessary to discuss the concept of bio refinery to make biofuel production financially more attractive as well because the future prospects of second‐generation biofuel are promising.  相似文献   

13.
High energy prices, energy and environment security, concerns about petroleum supplies are drawing considerable attention to find a renewable biofuels. Biodiesel, a mixture of fatty acid methyl esters (FAMEs) derived from animal fats or vegetable oils, is rapidly moving towards the mainstream as an alternative source of energy. However, biodiesel derived from conventional petrol or from oilseeds or animal fat cannot meet realistic need, and can only be used for a small fraction of existing demand for transport fuels. In addition, expensive large acreages for sufficient production of oilseed crops or cost to feed animals are needed for raw oil production. Therefore, oleaginous microorganisms are available for substituting conventional oil in biodiesel production. Most of the oleaginous microorganisms like microalgae, bacillus, fungi and yeast are all available for biodiesel production. Regulation mechanism of oil accumulation in microorganism and approach of making microbial diesel economically competitive with petrodiesel are discussed in this review.  相似文献   

14.
One way to reduce greenhouse gas emissions from the transportation sector is to replace fossil fuels by biofuels. However, production of biofuels also generates greenhouse gas emissions. Energy and greenhouse gas balances of transportation biofuels suitable for large-scale production in Finland have been assessed in this paper. In addition, the use of raw materials in electricity and/or heat production has been considered. The overall auxiliary energy input per energy content of fuel in biofuel production was 3–5-fold compared to that of fossil fuels. The results indicated that greenhouse gas emissions from the production and use of barley-based ethanol or biodiesel from turnip rape are very probably higher compared to fossil fuels. Second generation biofuels produced using forestry residues or reed canary grass as raw materials seem to be more favourable in reducing greenhouse gas emissions. However, the use of raw materials in electricity and/or heat production is even more favourable. Significant uncertainties are involved in the results mainly due to the uncertainty of N2O emissions from fertilisation and emissions from the production of the electricity consumed or replaced.  相似文献   

15.
秸秆、动植物油脂、微藻等生物质原料可以生产液体运输燃料,生物燃料的化学成分包括醇、酯、烃三类。燃料乙醇主要替代汽油,受到各国重视,其中纤维素乙醇技术发展较快。脂肪酸甲酯是第一代生物柴油的主要成分,价格主要受油脂原料价格的影响,由于和柴油相容性差,低温流动性不好,将逐渐被加氢生产的第二代生物柴油取代。相比醇、酯等含氧燃料,烃类生物燃料在使用性能上有很多优势。有多条技术路线可以生产烃类燃料,其中油脂加氢制喷气燃料已接近商业应用,热解油加氢可将木质生物质原料中的"木质素"组分转化为生物油,大型快速热解工厂可以和热电联产装置组成联合系统,从而提高工厂综合热效率,降低生物燃料生产成本。因此,快速热解生产汽柴油将成为主要的生物燃料生产路线。生物质与煤共气化技术通过提高气化温度,不仅可以提高生物质气化效率,减少焦油的生成,还可以解决生物质供给的季节性问题,为生物质的高效利用提供了一条新的技术途径。微藻高压液化生产柴油是最具发展潜力的第三代生物燃料技术,我国需要加强微藻养殖及加工技术攻关。  相似文献   

16.
The oil price instability and the measures taken to reduce the increase in greenhouse gas emissions are the main factors promoting the development and use of environmentally friendly energies. From an energy efficiency point of view, biofuels constitute a renewable energy source and its use helps to reduce energy dependency on fossil fuels. The most used biofuels for transport worldwide are biodiesel (BD) and bioethanol. However, there are other options such as straight vegetable oil (SVO).SVO can be small-scale produced in local cooperatives through pressing, filtering and conditioning processes which are much simpler than the ones required for BD production. In this study a comparative life cycle assessment (LCA) of two biofuels obtained from Spanish rapeseed, namely small-scale SVO and large-scale BD, is performed. The LCA methodology allows the two biofuels’ production and their rate of consumption in a vehicle (a truck) to be compared. In this manner, it is possible to assess which is environmentally advantageous: to use SVO directly as biofuel or to convert it to BD. Moreover, LCA is used in the study to calculate the energy return on investment index (EROI) and an energy conversion ratio to evaluate which biofuel is more energy efficient.The obtained results show the environmental benefits of using SVO instead of BD by analyzing representative impact categories defined by the CML and EDIP methods. A sensitivity analysis has also been conducted. EROI indexes for SVO and BD production show a clear preference for SVO as compared to BD.  相似文献   

17.
Biodiesel derived from palm oil has been recognized as a high-productivity oil crop among the first generation of biofuels. This study evaluated and discussed the net energy balance for biodiesel in Indonesia by calculating the net energy ratio (NER) and net energy production (NEP) form the total energy input and output. The results of the calculation of energy input for the default scenario demonstrated that the primary energy inputs in the biodiesel production lifecycle were the methanol feedstock, energy input during the biodiesel production process, and urea production. These three items amounted to 85% of the total energy input. Next, we considered and evaluated ways to potentially improve the energy balance by utilizing by-products and biogas from wastewater treatment in the palm oil mill. This result emphasized the importance of utilizing the biomass residue and by-products. Finally, we discussed the need to be aware of energy balance issues between countries when biofuels are transported internationally.  相似文献   

18.
In the production of biofuels for transport many critics have argued about the poor energy efficiency and environmental performance of the production industries. Optimism is thus set on the production of second generation biofuels, while first generation biofuels continue to dominate worldwide. Therefore it is interesting to consider how the environmental performance of first generation biofuel industries can be improved. The field of industrial symbiosis offers many possibilities for potential improvements in the biofuel industry and theories from this research field are used in this paper to highlight how environmental performance improvements can be accomplished. This comes in the form of by-product synergies and utility synergies which can improve material and energy handling. Furthermore, the processes and products can gain increased environmental performance improvements by the adaption of a renewable energy system which will act as a utility provider for many industries in a symbiotic network. By-products may thereafter be upcycled through biogas production processes to generate both energy and a bio-fertilizer. A case study of an actual biofuel industrial symbiosis is also reviewed to provide support for these theories.  相似文献   

19.
It has been recognized that oils derived from microorganism and wastewater sludge are comparable replacements of traditional biodiesel production feedstock, which is energy intensive and costly. Energy balance and greenhouse gas (GHG) emissions are essential factors to assess the feasibility of the production. This study evaluated the energy balance and GHG emissions of biodiesel production from microbial and wastewater sludge oil. The results show that energy balance and GHG emissions of biodiesel produced from microbial oil are significantly impacted by the cultivation methods and carbon source. For phototrophic microorganism (microalgae), open pond system gives 3.6 GJ higher energy gain than photo bioreactor system in per tonne biodiesel produced. For heterotrophic microorganisms, the energy balance depends on the type of carbon source. Three carbon sources including starch, cellulose, and starch industry wastewater (SIW) used in this study showed that utilization of SIW as carbon source provided the most favorable energy balance. When oil extracted from municipal sludge is used for biodiesel production, the energy gain is up to 29.7 GJ per tonne biodiesel produced, which is higher than the energy gain per tonne of biodiesel produced from SIW cultivated microbes. GHG emissions study shows that biodiesel production from microbes or sludge oil is a net carbon dioxide capture process except when starch is used as raw material for microbial oil production, and the highest capture is around 40 tonnes carbon dioxide per tonne of biodiesel produced.  相似文献   

20.
The potential of biofuels contributing to the UK emission reduction targets in the formulated UK Low Carbon Transition Plan (LCTP) and the UK’s obligation in the wider EU emissions reduction targets are assessed using four scenarios. The scenarios were evaluated using hybrid lifecycle assessment developed in a multi-regional input–output (MRIO) framework. In the hybrid MRIO LCA framework, technology-specific processes in the biofuels and fossil fuels LCA systems are integrated into a generalised 2-region (UK and Rest of the World) environmental-economic input–output framework in order to account for economy-wide indirect GHG emissions in the biofuels and fossil fuels LCA systems in addition to other indirect impacts such as indirect land use change. The lifecycle greenhouse gas emissions of biodiesel (soybean, palm, rape, waste cooking oil) and bio-ethanol (sugarcane, sugarbeet, corn) were assessed and compared to fossil fuel (diesel and petrol) baseline. From one of the scenarios, biodiesel production from waste cooking oil and bioethanol from sugarbeet offer the biggest potential for emissions savings relative to fossil fuel equivalent and offering a maximum emission savings of 4.1% observed with a biofuel market share of 10% reached in 2020. It was also established that under current biofuel feedstock mix, to achieve the 6% emissions saving primarily from biofuels as proposed in the LCTP, 23.8% of the transport fuels market would be required to be held by biofuels by 2020.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号