首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of co-engineered macrolide–mannitol particles were successfully prepared using azithromycin (AZ) as a model drug. The formulation was designed to target local inflammation and bacterial colonization, via the macrolide component, while the mannitol acted as mucolytic and taste-masking agent. The engineered particles were evaluated in terms of their physico-chemical properties and aerosol performance when delivered via a novel high-payload dry powder Orbital? inhaler device that operates via multiple inhalation manoeuvres. All formulations prepared were of suitable size for inhalation drug delivery and contained a mixture of amorphous AZ with crystalline mannitol. A co-spray dried formulation containing 200?mg of 50:50?w/w AZ: mannitol had 57.6%?±?7.6% delivery efficiency with a fine particle fraction (≤6.8?µm) of the emitted aerosol cloud being 80.4%?±?1.1%, with minimal throat deposition (5.3?±?0.9%). Subsequently, it can be concluded that the use of this device in combination with the co-engineered macrolide–mannitol therapy may provide a means of treating bronchiectasis.  相似文献   

2.
Background: Unknown influence of cyclodextrin on the properties of the film formulation aimed for buccal application. Aim: Development and characterization of a novel bioadhesive film formulation for buccal atenolol delivery containing drug/cyclodextrin inclusion. Method: Interaction between atenolol and randomly methylated β-cyclodextrin (RAMEB) in solution was studied by phase solubility studies. The complex in solid state was prepared by the freeze-drying method and characterized by differential scanning calorimetry and Fourier-transformed infrared spectroscopy (FTIR). The drug, free or in complex form, was incorporated into polymeric films prepared by the casting method using ethylcellulose (EC), polyvinyl alcohol (PVA), and hydroxypropyl methylcellulose (HPMC). The prepared film formulations were characterized in terms of swelling, bioadhesion, and in vitro drug release. Results: The formation of a stabile inclusion complex (Ks = 783.4?±?21.6 M?1) in 1:1 molar stoichiometry was confirmed in solution and in solid state. The swelling properties of films were predominated by the type of polymer used in the formulation. In vitro bioadhesive properties of the films were well correlated with the swelling properties of the polymers used in the formulation. Although incorporation of the drug, free or in complex form, decreased the bioadhesion of the films, PVA- and HPMC-based formulations retained suitable bioadhesive properties. Higher atenolol solubility upon complexation with RAMEB increased the drug dissolution rate under conditions designed to be similar to those on the buccal mucosa, but it has decreased the drug release rate from the PVA and HPMC film formulation, leading to a sustained drug release pattern. In the case of EC-based films, RAMEB promoted drug release. Other parameters that influenced the drug release rate were associated with the structure of the polymer used in the formulation, swelling characteristics of the films, and the interaction between atenolol and hydrophilic polymers that was demonstrated by FTIR analysis. Conclusion: Incorporation of atenolol in the form of an inclusion complex into hydrophilic films may be an appropriate strategy to prepare a suitable formulation for buccal drug delivery.  相似文献   

3.
Abstract

Background: Adapalene is a widely used topical anti-acne drug; however, it has many side effects. Liposomal drug delivery can play a major role by targeting delivery to pilosebaceous units, reducing side effects and offering better patient compliance.

Objective: To prepare and evaluate adapalene-encapsulated liposomes for their physiochemical and skin permeation properties.

Methods: A liposomal formulation of adapalene was prepared by the film hydration method and characterized for shape, size, polydispersity index (PDI), encapsulation efficiency and thermal behavior by techniques such as Zetasizer®, differential scanning calorimetry and transmission electron microscopy. Stability of the liposomes was evaluated for three months at different storage conditions. In vitro skin permeation studies and confocal laser microscopy were performed to evaluate adapalene permeation in pig ear skin and hair follicles.

Results: The optimized process and formulation parameters resulted in homogeneous population of liposomes with a diameter of 86.66?±?3.5?nm in diameter and encapsulation efficiency of 97.01?±?1.84% w/w. In vitro permeation studies indicated liposomal formulation delivered more drug (6.72?±?0.83?μg/cm2) in hair follicles than gel (3.33?±?0.26?μg/cm2) and drug solution (1.62?±?0.054?μg/cm2). Drug concentration delivered to the skin layers was also enhanced compared to other two formulations. Confocal microscopy images confirmed drug penetration in the hair follicles when delivered using the liposomal formulation.

Conclusion: Adapalene was efficiently encapsulated in liposomes and led to enhanced delivery in hair follicles, the desired target site for acne.  相似文献   

4.
Saquinavir (SQV), a candidate for buccal drug delivery, is limited by poor solubility. This study identified the effects of high-energy ball milling on the buccal permeability of SQV and compared it to the effects of chemical enhancers, i.e. ethylenediaminetetraacetic acid (EDTA), sodium lauryl sulfate (SLS), polyethylene glycol (PEG) and beta cyclodextrin (β-cyclodextrin). SQV was ball milled using a high energy planetary mill (1, 3, 15 and 30?h) and permeation studies across porcine buccal mucosa were performed using franz diffusion cells. Drug was quantified by UV spectrophotometry. Both unmilled and milled SQV samples were able to permeate the buccal mucosa. Milled samples of 15?h displayed the greatest flux of 10.40?±?1.24?µg/cm2?h and an enhancement ratio of 2.61. All enhancers were able to increase the buccal permeability of unmilled SQV, with SLS achieving the greatest flux (6.99?±?0.7?µg/cm2) and an enhancement ratio of 1.75. However, all the milled SQV samples displayed greater permeability than SLS, the best chemical enhancer for unmilled SQV. Enhanced permeability by ball milling was attributed to reduction in particle size, formation of solid dispersions and an increase in solubility of milled samples. Microscopical evaluation revealed no significant loss in mucosal cellular integrity treated with either unmilled or milled SQV. Histological studies suggest that SQV uses both the paracellular and transcellular route of transport across the mucosa, with drug treatment having no permanent affects. High-energy ball milling was superior to the chemical enhancers studied for enhancement of SQV buccal permeation.  相似文献   

5.
In the present study, solid lipid nanoparticles (SLNs) have been formulated as a carrier system for effective intracellular delivery of STAT3 inhibitor, niclosamide (Niclo) to triple negative breast cancer (TNBC) cells. Emulsification-solvent evaporation method was employed in formulation of Niclo-loaded SLNs (Niclo-SLNs). The formula of Niclo-SLN was optimized by Box–Behnken design and characterized for their shape, size, and surface charge. The in vitro anti-cancer efficacy of Niclo-SLNs was studied in TNBC cells. The prepared Niclo-SLNs were found to be spherical with the particle size of 112.18?±?1.73?nm and zetapotential of 23.8?±?2.7?mV. In the in vitro anticancer study the Niclo SLNs show a better cytotoxicity than the naïve Niclo, which is attributed to improved cell uptake of SLN formulation. In conclusion, the results of the present study demonstrate that the formulation of Niclo as SLNs will improve the anticancer efficacy against TNBC.  相似文献   

6.
The aim of this study was to explore the potential of novel oleic acid (OA) derivatives as buccal permeation enhancers for the delivery of didanosine (ddI). The OA derivatives, i.e. ester derivative (OA1E), the dicarboxylic acid derivative (OA1A) and the bicephalous dianionic surfactant (OA1ANa) were synthesized and their effects were compared to the parent OA. OA, OA1E, OA1A and OA1ANa at 1%?w/w all showed potential for enhancing the buccal permeability of ddI with enhancement ratio (ER) of 1.29, 1.33, 1.01 and 1.72, respectively. OA1ANa at 1%?w/w demonstrated the highest flux (80.30?±?10.37?µg?cm?2?h), permeability coefficient (4.01?±?0.57?×?10?3?cm?h?1) and ER (1.72). The highest flux for ddI (144.00?±?53.54?µg?cm?2?h) was reported with OA1ANa 2%?w/w, which displayed an ER of 3.09 more than that with ddI alone. At equivalent concentrations, OA1ANa (ER?=?3.09) had a significantly higher permeation-enhancing effect than its parent OA (ER?=?1.54). Histomorphological studies confirmed that OA1ANa at all concentrations (0.5, 2.0 and 6.0%?w/w) had no adverse effects on the mucosae. Morphological changes such as vacuoles formation and increased intercellular spaces were attributed to the buccal permeation-enhancing effect of OA1ANa. This study demonstrated the potential of novel OA derivatives as buccal permeation enhancers. OA1ANa at 2%?w/w was also identified as the optimal novel OA derivative to widen the pool of fatty acid derivatives as chemical permeation enhancers for buccal drug delivery.  相似文献   

7.
The purpose of this study was to develop suitable matrix-type transdermal drug delivery systems of Ketotifen fumarate (KF) as antiasthmatic drugs. Chitosan–alginate polyelectrolyte complex (PEC) films were used as drug release regulators for KF. Antihistaminic films with variable PEC compositions were prepared using different ratios of chitosan (CTS) to sodium alginate (ALG). Propylene glycol (PG) was used as plasticizer; Tween 80 (T80) and Span 20 (S20) were used as permeability enhancers. Nine formulations were obtained by film casting method and characterized in terms of weight uniformity, thickness, folding endurance, moisture lost, and moisture absorption. In addition, drug release and permeation through rat abdominal skin mounted in Franz cell were investigated. All formulations were found to be suitable in terms of physicochemical characteristics, and there was no significant interaction between the used drug and polymers. It was noticed that when T20 is used as permeation enhancer, a satisfactory drug release pattern was found where 99.88% of drug was released and an amount of 2.121?mg/cm2 of KF was permeated after 24?h. For the optimal formulation, a permeability coefficient of 14.00?±?0.001?cm h?1 and a latency time of 0.35?±?0.02?h were found. The in-vitro analysis showed controlled release profile which was fitted by Korsmeyer–Peppas model (R2?=?0.998). The obtained results suggested that new controlled release transdermal formulations of asthmatic drugs could be suitably designed as an alternative to the common forms.  相似文献   

8.
The present work aimed to synthesize solid lipid nanoparticles (SLNs) of Furosemide (FRSM). The parameter sensitivity analysis showed a significant effect of particle size and reference solubility on the AUC0–∞, Cmax and tmax. The FRSM-encapsulated SLNs were synthesized by the phase inversion temperature (PIT) technique using 32 factorial design. The optimal level of 221.28?mg of Compritol 888 ATO and 420?mg of Cremophor RH 40 showed a mean hydrodynamic diameter (MHD) of 25.54?±?0.57?nm, a polydispersity index (PdI) of 0.158?±?0.01, the % entrapment efficiency of 80.70?±?4.06%, percent dissolution efficiency of 71.72?±?1.52% and time elapsed for 50% drug release of 3.67?±?0.15?h. The PIT was determined using the turbidity method and the values ranged between 75°C and 73°C. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) images represent spherical to sub-spherical and smooth surface of SLN. The Fourier transform-infrared (FTIR), differential scanning calorimetry (DSC) and x-ray diffraction (XRD) depict the drug-excipient compatibility. Korsmeyer–Peppas was found to be the best fit release kinetics model (R2?=?0.973; K-value?=?29.96 and release exponent?=?0.40), predicting the Fickian diffusion. The results advocate that the optimized formulation (OF) could promote the controlled release, and improve the physicochemical stability of the formulation. Hence, SLN could be a potential drug carrier for the peroral delivery of FRSM.  相似文献   

9.
Background: Solid lipid nanoparticle (SLN) systems have been applied to various drugs and delivery routes. Vitamin K1 is an important cofactor for maintaining hemostasis and preventing hemorrhage. Method: Vitamin K1-loaded SLNs are systematically being developed by optimizing triglycerides and lipophilic and hydrophilic surfactants based on the size and stability of the resulting SLNs. Concentrations of the surfactants, Myverol and Pluronic, were optimized by a central composite design and response surface methodology. Vitamin K1 (phylloquinone) was used as a lipophilic drug in the SLN system to evaluate the potential for oral delivery. Results: Vitamin K1-loaded SLNs had a mean size of 125 nm and a zeta potential of ?23 mV as measured by photon correlation spectroscopy. The prepared SLNs were examined by differential scanning calorimetry and transmission electron microscopy and found to have an imperfect crystalline lattice and a spherical morphology. Effects of ultrasonication duration and drug load on the particle size and entrapment efficiency of the SLNs were also evaluated. Conclusion: More than 85% of the vitamin K1 was entrapped in SLNs when the payload was <5%. The vitamin K1 in SLNs was stable for a 54-h duration in simulated gastric and intestinal fluids. The particle size and vitamin K1 entrapped in the SLN were stable after 4 months of storage at 25°C. The results demonstrated that SLNs prepared herein can potentially be exploited as carriers for the oral delivery of vitamin K1.  相似文献   

10.
The aim of this study is to evaluate the effect of liquid-to-solid lipid ratio on properties of flurbiprofen-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), and to clarify the superiority of NLCs over SLNs for transdermal administration. Particle size, zeta potential, drug encapsulation efficiency, in vitro occlusion factor, differential scanning calorimetry, X-ray diffractometry, in vitro percutaneous permeation profile, and stability of SLNs and NLCs were compared. Particle size, zeta potential, drug encapsulation efficiency, in vitro occlusion factor, and in vitro percutaneous permeation amount of the developed NLCs were all <200?nm, 78%, >35, and >240?μg/cm2, respectively, however, for SLNs were 280?nm,??29.11?mV, 63.2%, 32.54, and 225.9?μg/cm2, respectively. After 3 months storage at 4?°C and 25?°C, almost no significant differences between the evaluated parameters of NLCs were observed. However, for SLNs, particle size was increased to higher than 300?nm (4?°C and 25?°C), drug encapsulation efficiency was decreased to 51.2 (25?°C), in vitro occlusion factor was also decreased to lower than 25 (4?°C and 25?°C), and the cumulative amount was decreased to 148.9?μg/cm2 (25?°C) and 184.4?μg/cm2 (4?°C), respectively. And DSC and XRD studies indicated that not only the crystalline peaks of the encapsulated flurbiprofen disappeared but also obvious difference between samples and bulk Compritol® ATO 888 was seen. It could be concluded that liquid-to-solid lipid ratio has significant impact on the properties of SLNs and NLCs, and NLCs showed better stability than SLNs. Therefore, NLCs might be a better option than SLNs for transdermal administration.  相似文献   

11.
The aim of this work is to develop biodegradable nanoparticles for improved kidney bioavailability of rhein (RH). RH-loaded nanoparticles were prepared using an emulsification solvent evaporation method and fully characterized by several techniques. Kidney pharmacokinetics was assessed by implanting a microdialysis probe in rat's kidney cortex. Blood samples were simultaneously collected (via femoral artery) for assessing plasma pharmacokinetics. Optimized nanoparticles were small, with a mean particle size of 132.6?±?5.95?nm, and homogeneously dispersed. The charge on the particles was nearly zero, the encapsulation efficiency was 62.71?±?3.02%, and the drug loading was 1.56?±?0.15%. In vitro release of RH from the nanoparticles showed an initial burst release followed by a sustained release. Plasma and kidney pharmacokinetics showed that encapsulation of RH into nanoparticles significantly increased its kidney bioavailability (AUCkidney/AUCplasma?=?0.586?±?0.072), clearly indicating that nanoparticles are a promising strategy for kidney drug delivery.  相似文献   

12.
Abstract

Context: Flutamide is a potent anti-androgen with the several unwanted side effects in systemic administration, therefore, it has attracted special interest in the development of topically applied formulations for the treatment of androgenic alopecia.

Objective: The purpose of this study was to prepare and characterize the solid lipid nanoparticles (SLNs) of Flutamide for follicular targeting in the treatment of the androgenic alopecia.

Methods: Flutamide-loaded SLNs, promising drug carriers for topical application were prepared by hot melt homogenization method. Drug permeation and accumulation in the exercised rat skin and histological study on the male hamsters were performed to assess drug delivery efficiency in vitro and in vivo, respectively.

Results: The optimized Flutamide-loaded SLNs (size 198?nm, encapsulation efficiency percentage 65% and loading efficiency percentage 3.27%) exhibited a good stability during the period of at least 2 months. The results of X-ray diffraction showed Flutamide amorphous state confirming uniform drug dispersion in the SLNs structure. Higher skin drug deposition (1.75 times) of SLN formulation compared to Flutamide hydroalcoholic solution represented better localization of the drug in the skin. The in vivo studies showed more new hair follicle growth by utilizing Flutamide-loaded SLNs than Flutamide hydroalcoholic solution which could be due to the higher accumulation of SLNs in the hair follicles as well as slowly and continues release of the Flutamide through the SLNs maximizing hair follicle exposure by antiandrogenic drug.

Conclusion: It was concluded Flutamide-loaded SLN formulation can be used as a promising colloidal drug carriers for topical administration of Flutamide in the treatment of androgenic alopecia.  相似文献   

13.
Pellets, reliant on pH-sensitivity and time-dependency for drug delivery, provide one of the most versatile opportunities for targeting colon. 5-Fluorouracil (5-FU) loaded pellets were prepared by extrusion-spheronization using Avicel® PH101 as a spheronization aid and hydroxypropylmethylcellulose K4M (HPMC K4M) solution as a binder. A 32 full factorial design was employed to optimize spheronization speed and time. Obtained pellets were evaluated for flow properties, pellet size, roundness and aspect ratio. Optimized batch was coated in a bottom-spray fluidized bed processor (FBP) with an inner coat of sustained release polymer Eudragit NE30D and an outer coat of pH-sensitive polymer Eudragit FS30D. The coating levels were statistically optimized and in vitro drug release was monitored by changing pH media method. Optimized system with 15% inner and outer coating levels revealed t50% (time required for 50% drug release) to be about 9?h while almost complete drug was released in 24?h (98.71?±?1.33%) with highest dissolution efficiency (DE24h) of 58.71%. The optimization model was validated; the predicted and experimental/actual values for validation batch (M1) were in close tolerance and the standard error (SE) was also small. Drug release was also studied at pH 7.4. Scanning electron microscopy (SEM) demonstrated average coating thickness to be 32.50?±?3.0 µm. Hence, the present study provides constructive results for colon targeting of 5-FU pellets with industrially feasible processes.  相似文献   

14.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

15.
The aim of this study was to improve the solubility, oral bioavailability, and anti-gastroesophageal reflux activity of curcumin (CM) by preparing two CM-loaded, novel, binary mixed micelles (CM-M). The two CM-M were prepared by ethanol thin-film hydration method. One (CM-T) was prepared using D-alpha-tocopheryl polyethylene glycol 1000 succinate and Solutol®HS15, and the other (CM-F) was prepared using Pluronic®F127 and Solutol®HS15. The entrapment efficiency and drug loading of CM-T were 83.61?±?0.54% and 2.20?±?0.65%, respectively, which were lower than those of CM-F (88.66?±?0.12% and 1.47?±?0.26%, respectively). TEM results demonstrated that CM-T and CM-F were homogeneous and spherical. The permeability of CM delivered via CM-T and CM-F was enhanced across a Caco-2 cell monolayer, and CM-T and CM-F showed a 5.24- and 4.76-fold increase in relative oral bioavailability, respectively compared with free CM. In addition, the in vivo anti-gastroesophageal reflux study showed that CM-T and CM-F achieved higher anti-gastroesophageal reflux efficacy compared with free CM. Collectively, these findings were indicative of an oral micelle formulation of CM with increased solubility, oral bioavailability, and anti-gastroesophageal reflux activity.  相似文献   

16.
Bortezomib (BTZ), a proteasome inhibitor, is clinically used for the treatment of multiple myeloma and mantle cell lymphoma via intravenous or subcutaneous administration. Since BTZ has limited intestinal permeability, in this study, solid lipid nanoparticles (SLNs) were selected as lipid carrier to improve the intestinal permeability of BTZ. The nanoparticles were prepared by hot oil-in-water emulsification method and characterized for physicochemical properties. Moreover, in situ single-pass intestinal perfusion technique was used for intestinal permeability studies. Mean particle size of the BTZ-loaded solid lipid nanoparticles (BTZ-SLNs) was 94.6?±?0.66?nm with a negative surface charge of –18?±?11?mV. The entrapment efficiency of the BTZ-SLNs was 68.3?±?3.7% with a drug loading value of 0.8?±?0.05%. Cumulative drug release (%) over 48?h, indicated a slow release pattern for nanoparticles. Moreover, the SEM image showed a spherical shape and uniform size distribution for nanoparticles. Also, FTIR analysis indicated that BTZ was successfully loaded in the SLNs. The results of the intestinal perfusion studies revealed an improved effective permeability for BTZ-SLNs with a Peff value of about threefold higher than plain BTZ solution.  相似文献   

17.
The purpose of this study was to investigate the influence of the structure and the composition of water/Aerosol-OT (AOT)-Tween 85/isopropylmyristate (IPM) microemulsion system (WATI) on transdermal delivery of 5-fluorouracil (5-FU). The structure of WATI was characterized by measuring surface tension, density, viscosity, electric conductivity, and differential scanning calorimetry. The effect of the drug loading, water content, component compositions and the amount of mixed surfactant on permeation of 5-FU through mice skin was evaluated by using Franz-type diffusion cells. The results in vitro implied that WATI was W/O microemulsion when the water content was below 20 wt% at fixed 20 wt% of mixed surfactant at 25°C, then might be transformed to a bicontinuous structure, finally, formed O/W microemulsion with water content over 30 wt%. Increase of the drug loading can directly facilitate the penetration of the drug across the skin. Drug diffusion after 12?h from the bicontinuous microemulsion (795.1?±?22.3 µg·cm?2) would be fastest compared to that from the W/O microemulsion (650.2?±?11.7 µg·cm?2) and the O/W microemulsion (676.6?±?14.8 µg·cm?2). The combination of AOT and IPM could bring about synergistic effect on the skin enhancement, however, Tween 85 in WATI decreased the cumulative permeation amount of 5-FU. The content of mixed surfactant had no effect on the permeation of 5-FU at fixed surfactant/cosurfactant ratio (Km?=?2). Thus, the increased transdermal delivery the hydrophilic drug of 5-FU was found to be concerned with both of the structure and the composition of WATI.  相似文献   

18.
Abstract

The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug–resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8?±?1.2?μm and drug loading at 43.00?±?0.09 %. The results indicate that drug released from the drug–resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug–resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.  相似文献   

19.
Abstract

Ternary mixed micelles constituted of Soluplus®, sodium cholate, and phospholipid were prepared as nano-delivery system of the anticancer drug, docetaxel. The formulation of docetaxel-loaded ternary mixed micelles (DTX-TMMs) with an optimized composition (Soluplus®/sodium cholate/phospholipid= 3:2:1 by weight) were obtained. The main particle size of DTX-TMMs was 76.36?±?2.45?nm, polydispersity index (PDI) was 0.138?±?0.039, and the zeta potential was ?8.46?±?0.55?mv. The encapsulation efficiency was 94.24?±?4.30% and the drug loading was 1.25%. The critical micelle concentration value was used to assess the ability of carrier materials to form micelles. The results indicated that the addition of Soluplus® to sodium cholate-phospholipid mixed micelles could reduce the critical micelle concentration and improve the stability. In vitro release studies demonstrated that compared with DTX-Injection group, the DTX-TMMs presented a controlled release property of drugs. In vivo pharmacodynamics results suggested that DTX-TMMs had the most effective inhibitory effect on tumor proliferation and had good biosafety. In addition, the relative bioavailability of mixed micelles was increased by 1.36 times compared with the DTX-Injection in vivo pharmacokinetic study indicated that a better therapeutic effect could be achieved. In summary, the ternary mixed micelles prepared in this study are considered to be promising anticancer drug delivery systems.  相似文献   

20.
The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81?kg/mm2 tensile strength and 2.47?N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号