首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TRNSYS energy analysis tool has been capable of simulating whole-building coupled heat transfer and building airflow for about 10 years. The most recent implementation was based on two TRNSYS modules, Type 56 and Type 97. Type 97 is based on a subset of the airflow calculation capabilities of the CONTAM multizone airflow and contaminant transport program developed by the National Institute of Standards and Technology. This paper describes the development of new CONTAM capabilities in support of an updated combined, multizone building heat transfer, airflow and contaminant transport simulation approach using TRNSYS. It presents an illustrative case that highlights the new coupling capability and also presents the application of this coupled simulation approach to a practical design problem of the energy use related to airflow through entry doors in non-residential buildings.  相似文献   

2.
Currently, several whole-building simulation tools (e.g., esp-r, EnergyPlus, TRNSYS, TAS, IES VE, IDA ICE, VA114, BSim, etc.) are used to assess the energy performance of double-skin façade (DSF) buildings. The aforementioned tools are well suited to assess energy performance of conventional building systems or whole buildings; however, it is questionable whether such tools can accurately describe the transient heat and mass transfer phenomena that occur in the complex three-dimensional geometry of DSFs. This paper describes an empirical validation of the EnergyPlus simulation tool for performance simulation of a DSF. A series of experiments were conducted for cavity airflow and thermal behavior of the DSF and then compared with simulation outputs. In this paper, it is shown that there are significant differences in both thermal and airflow behavior of DSFs between the measurements and simulation predictions by EnergyPlus. This study investigates three cases causing the differences and elucidates what should be considered when modeling DSFs using EnergyPlus.  相似文献   

3.
A co-simulation environment, consisting of a detailed mathematical model of a thermal energy storage unit which is incorporated with an EnergyPlus simulation model of a full building HVAC system, is described. The two models are integrated using the user-defined plant component feature in EnergyPlus and the Building Controls Virtual Test Bed (BCVTB) environment. The thermal energy storage unit, which consists of encapsulated phase change material in a series of flat plates and a heat transfer working fluid (water), is modelled using a transient one-dimensional forward finite difference method. The thermal storage model is executed within MATLAB and is verified against experimental data, showing a discharging heat transfer accuracy to within 2.5%. The building model, which incorporates a retrofitted ground source heat pump system within a thermally massive building, is simulated in the EnergyPlus environment. The co-simulation arrangement allows for in-depth analysis of the integrated system under dynamic operating conditions, which is currently not possible within the EnergyPlus environment. Moreover, the overall adopted approach, based on generic integration of a detailed mathematical model, using a third party generalised programming environment, into an established building simulation environment, serves as a successful exemplar for other researchers and practitioners working in the field.  相似文献   

4.
《Energy and Buildings》2001,33(4):319-331
Many of the popular building energy simulation programs around the world are reaching maturity — some use simulation methods (and even code) that originated in the 1960s. For more than two decades, the US government supported development of two hourly building energy simulation programs, BLAST and DOE-2. Designed in the days of mainframe computers, expanding their capabilities further has become difficult, time-consuming, and expensive. At the same time, the 30 years have seen significant advances in analysis and computational methods and power — providing an opportunity for significant improvement in these tools.In 1996, a US federal agency began developing a new building energy simulation tool, EnergyPlus, building on development experience with two existing programs: DOE-2 and BLAST. EnergyPlus includes a number of innovative simulation features — such as variable time steps, user-configurable modular systems that are integrated with a heat and mass balance-based zone simulation — and input and output data structures tailored to facilitate third party module and interface development. Other planned simulation capabilities include multizone airflow, and electric power and solar thermal and photovoltaic simulation. Beta testing of EnergyPlus began in late 1999 and the first release is scheduled for early 2001.  相似文献   

5.
The presented paper aims at detailing the results of an investigation that was recently conducted in Italy to evaluate the contribution infiltration makes to meeting ventilation needs in a recently renovated apartment building and the corresponding energy costs. It is years that increasing importance has been placed on the energy efficiency in residential buildings as about 70% of the existing Italian residential building stock was built before 1976 (i.e. before any measure related to the energy efficiency in buildings). As existing dwellings have been traditionally considered ‘leaky’, the actions for improving their energy efficiency have often determined tighter buildings, raising concerns about whether the amount of infiltration is sufficient to provide occupants with acceptable indoor air quality (IAQ). The current state of knowledge on infiltration in multi-family buildings in terms of measuring procedures, corresponding air change rates and airflow patterns was reviewed. The air tightness of a three-storey, six-unit, multi-family building which can be considered representative of the existing recently renovated Italian building stock was characterized by means of a series of fan pressurization tests. The performed blower door tests are documented and results of the data analysis are reported and discussed. A simulation model was developed; simulations were performed to analyse in detail the winter magnitude of air infiltration. Winter is usually detrimental to IAQ, as severe outdoor weather prompts occupants to keep closed any opening that could allow cold drafts into their homes. Modelling results were validated on the basis of a 3-week monitoring campaign. The developed model enabled to estimate the variation with time of infiltration rates and therefore the influence of infiltrating air on the resulting heat loss and IAQ. Numerical predictions were derived using the EnergyPlus simulation tool which allowed to combine whole building thermal simulation and detailed multi-zone airflow modelling. Results show that, during the considered heating season (October–April), the average air change rate due to infiltration was approximately 0.1 h?1. It was concluded that infiltration cannot be relied upon to provide adequate ventilation air and, if not assisted by other means of ventilation, IAQ deterioration is likely to occur.  相似文献   

6.
Energy performance of a dual airflow window under different climates   总被引:4,自引:0,他引:4  
Ventilated windows have shown great potential in conserving energy in buildings and provide fresh air to improve indoor air quality. This paper reports our effort to use EnergyPlus to simulate the energy performance of a dual airflow window under different climates. Our investigation first developed a network model to account for the two-dimensional heat transfer in the window system and implemented it in EnergyPlus. The two-dimensional assumption and the modified EnergyPlus program were validated by the measured temperatures of the window and the energy demand of a test cell with the window under actual weather conditions. Then EnergyPlus was applied to analyze energy performance of a small apartment installed with the dual airflow windows in five different climate zones in China. The energy used by the apartment with blinds windows and low-e windows was also calculated for comparison. The dual airflow window can reduce heating energy of the apartment, especially in cold climate. The cooling energy reduction by the window was less important than that by shading solar radiation. The dual airflow window is recommended for colder climate. If improving air quality is a major consideration for a building, the window can be used in any climate.  相似文献   

7.
Airflow modelling is of fundamental importance for evaluating ventilation performance and energy consumption in buildings, and various approaches to the problem—starting from purely empirical up to the CFD ones—have been proposed and evaluated in the past years. Moreover, since the ultimate goal is whole building modelling, airflow simulation needs coupling with Energy Simulation (ES), in order to assess the overall energy performance. Due to the substantial differences between the software employed for airflow and ES, co-simulation is very often felt as the only way to handle such a problem. For example, in recent years a lot of effort has been spent in to couple ES and CFD tools. This paper proposes an alternative, in the form of an approach for solving the Navier-Stokes equations in a general multi-domain modelling framework. Since co-simulation is not involved, the correctness of the numerical solution relies on a single solver, thus being really transparent to the analyst. This is a first step towards a whole building simulation tool embedded in a unique framework capable of performing energy analysis, computing airflows, and representing control systems.  相似文献   

8.
Hydronic radiant floor heating and cooling can potentially reduce energy consumption in buildings. Numerous building performance simulation (BPS) tools contain models for predicting the heat transfer between embedded-tube radiant floor systems and building thermal zones. However, the accuracy, limitations, and methodologies of these models, and their implementations into BPS tools, have never been contrasted in the literature. This paper describes the approaches employed by TRNSYS, ESP-r, and EnergyPlus for modelling embedded-tube radiant floors. An inter-model comparison is then presented for test cases designed to explore model performance. The predictions from the three BPS tools are compared to each other as well as to predictions made with a transient stand-alone finite element analysis tool. Significant issues are identified with the embedded-tube radiant floor models in all three BPS tools.  相似文献   

9.
Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results from different building energy modeling programs (BEMPs). This leads many users and stakeholders to lack confidence in the results from BEMPs and building simulation methods. This paper compared the building thermal load modeling capabilities and simulation results of three BEMPs: EnergyPlus, DeST and DOE-2.1E. Test cases, based upon the ASHRAE Standard 140 tests, were designed to isolate and evaluate the key influencing factors responsible for the discrepancies in results between EnergyPlus and DeST. This included the load algorithms and some of the default input parameters. It was concluded that there is little difference between the results from EnergyPlus and DeST if the input values are the same or equivalent despite there being many discrepancies between the heat balance algorithms. DOE-2.1E can produce large errors for cases when adjacent zones have very different conditions, or if a zone is conditioned part-time while adjacent zones are unconditioned. This was due to the lack of a strict zonal heat balance routine in DOE-2.1E, and the steady state handling of heat flow through interior walls and partitions. This comparison study did not produce another test suite, but rather a methodology to design tests that can be used to identify and isolate key influencing factors that drive the building thermal loads, and a process with which to carry them out.  相似文献   

10.
High levels of humidity in buildings lead to building pathologies. Moisture also has an impact on the indoor air quality and the hygrothermal comfort of the building’s occupants. To better assess these pathologies, it is necessary to take into account the heat and moisture transfer between the building envelope and its indoor ambience. In this work, a new methodology was developed to predict the overall behavior of buildings, which combines two simulation tools: COMSOL Multiphysics© and TRNSYS. The first software is used for the modeling of heat, air and moisture transfer in multilayer porous walls (HAM model: Heat, Air and Moisture transfer), and the second is used to simulate the hygrothermal behavior of the building (BES model: Building Energy Simulation). The combined software applications dynamically solve the mass and energy conservation equations of the two physical models. The HAM-BES coupling efficiency was verified. In this paper, the use of a coupled (HAM-BES) co-simulation for the prediction of the hygrothermal behavior of building envelopes is discussed. Furthermore, the effect of the 2D HAM modeling on relative humidity variations within the building ambience is shown. The results confirm the importance of the HAM modeling in the envelope on the hygrothermal behavior and energy demand of buildings.  相似文献   

11.
Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures’ impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low‐income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low‐ and high‐emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy‐efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost‐effective, widespread benefits.  相似文献   

12.
基于置换通风舒适、健康和节能的显著特点,本文回顾了置换通风的发展历程,从室内空气品质和节能等方面阐述了国内外置换通风的研究现状。气流组织、热舒适性和污染物分布是影响置换通风室内空气品质的主要因素,因而论文主要从置换通风的两个显著特性:热力分层和垂直温度梯度的角度讨论了室内热舒适性影响因素和研究现状,从颗粒和气体污染物的分布情况论述污染物对室内空气品质的影响,根据置换通风的气流特性,提出可以把室内污染物分为热源和冷源污染物进行研究;最后简要介绍了置换通风节能的情况和优势。  相似文献   

13.
EnergyPlus能耗模拟软件及其应用工具   总被引:1,自引:0,他引:1  
在综述国内外建筑能耗模拟软件研究现状基础上,总结并评价了EnergyPlus建筑能耗模拟软件的特点和运行过程。对目前常用于EnergyPlus的界面工具、输入文件创建工具和第三方界面工具进行了详细的介绍。  相似文献   

14.
Building heating, ventilation and air-conditioning (HVAC) system can be potential contaminant emission source. Released contaminants from the mechanical system are transported through the HVAC system and thus impact indoor air quality (IAQ). Effective control and improvement measures require accurate identification and prompt removal of contaminant sources from the HVAC system so as to eliminate the unfavourable influence on the IAQ. This paper studies the application of the adjoint probability method for identifying a dynamic (decaying) contaminant source in building HVAC system. A limited number of contaminant sensors are used to detect contaminant concentration variations at certain locations of the HVAC ductwork. Using the sensor inputs, the research is able to trace back and find the source location. A multi-zone airflow model, CONTAM, is employed to obtain a steady state airflow field for the studied building with detailed duct network, upon which the adjoint probability based inverse tracking method is applied. The study reveals that the adjoint probability method can effectively identify the decaying contaminant source location in building HVAC system with few properly located contaminant concentration sensors.  相似文献   

15.
Residents of low-income multifamily housing can have elevated exposures to multiple environmental pollutants known to influence asthma. Simulation models can characterize the health implications of changing indoor concentrations, but quantifying the influence of interventions on concentrations is challenging given complex airflow and source characteristics. In this study, we simulated concentrations in a prototype multifamily building using CONTAM, a multizone airflow and contaminant transport program. Contaminants modeled included PM(2.5) and NO(2) , and parameters included stove use, presence and operability of exhaust fans, smoking, unit level, and building leakiness. We developed regression models to explain variability in CONTAM outputs for individual sources, in a manner that could be utilized in simulation modeling of health outcomes. To evaluate our models, we generated a database of 1000 simulated households with characteristics consistent with Boston public housing developments and residents and compared the predicted levels of NO(2) and PM(2.5) and their correlates with the literature. Our analyses demonstrated that CONTAM outputs could be readily explained by available parameters (R(2) between 0.89 and 0.98 across models), but that one-compartment box models would mischaracterize concentrations and source contributions. Our study quantifies the key drivers for indoor concentrations in multifamily housing and helps to identify opportunities for interventions. PRACTICAL IMPLICATIONS: Many low-income urban asthmatics live in multifamily housing that may be amenable to ventilation-related interventions such as weatherization or air sealing, wall and ceiling hole repairs, and exhaust fan installation or repair, but such interventions must be designed carefully given their cost and their offsetting effects on energy savings as well as indoor and outdoor pollutants. We developed models to take into account the complex behavior of airflow patterns in multifamily buildings, which can be used to identify and evaluate environmental and non-environmental interventions targeting indoor air pollutants which can trigger asthma exacerbations.  相似文献   

16.
Airflow modelling in a computer room   总被引:5,自引:0,他引:5  
This study concerns the numerical simulation of airflow and the prediction of comfort properties in a visualisation room of a research centre. Because simulation accuracy depends on the modelling level, special care has been given to fine details. Particular interest has been concentrated on the four-way ceiling air supply diffuser, on the furniture and on the thermal conditions given on computers and on mannequins.

The geometric model was created using the parametric features of the pre-processor Gambit, in combination with elements created with the Rhinoceros NURBS modelling tool.

Mass, momentum, energy, turbulence, species and radiation conservation equations were solved using Fluent commercial flow solver. Computed airflow and heat transfer parameters were used for numerical prediction of indoor air quality quantities based on ISO 7730. Basic parameters included air temperature, relative humidity and air velocity. These were combined with clothing insulation and metabolic activity measures to obtain standard IAQ indices such as the mean age of air, the predicted mean vote and the predicted percentage of dissatisfied room occupants.

Post-processing was carried out with standard Fluent elements and also using Vu, a multi-platform tool which also allows data to be displayed in the Cave immersive environment.  相似文献   


17.
以南京某大空间建筑为对象,长45 m、宽15 m、高16 m,在9月过渡季连续多日测试了自然通风状况下的室内温度分布,发现同一垂直方向上温度的线性化程度较好,梯度在0.2℃/m左右,且随室外气象条件变化而变化。采用热压通风效应模型,计算了南京、武汉、重庆、广州4个不同夏热地区全年各月的热压通风量及满足基准通风量要求的最小上部开口面积与通风排热量。利用Energy Plus能耗软件模拟全年各月热压通风热舒适时数,发现广州地区具有最好的热压通风节能潜力。  相似文献   

18.
外遮阳百叶隔热性能与采光分析   总被引:1,自引:0,他引:1  
外遮阳百叶能合理控制太阳光线进人室内,减少建筑空调能耗和人工照明用电,改善室内光环境,已成为当前追求"绿色建筑"目标的一项具体措施.该文通过理论分析和模拟,借助EnergyPlus、Radiance等软件,结合光和热两方面综合考虑,对空调时期上海地区布置不同角度和活动的外遮阳百叶办公房间的空调能耗、照明能耗及室内光环境进行了模拟、分析与比较.算例结果表明:外遮阳对照明能耗和建筑光环境的影响不容忽视;夏热冬冷地区固定式遮阳百叶的不同角度设置对建筑能耗的影响较大,其中实施活动式外遮阳措施能大幅度降低建筑能耗,有效改善室内光环境.  相似文献   

19.
With the development of modern computer technology, a large amount of building energy simulation tools is available in the market. When choosing which simulation tool to use in a project, the user must consider the tool's accuracy and reliability, considering the building information they have at hand, which will serve as input for the tool. This paper presents an approach towards assessing building performance simulation results to actual measurements, using artificial neural networks (ANN) for predicting building energy performance. Training and testing of the ANN were carried out with energy consumption data acquired for 1 week in the case building called the Solar House. The predicted results show a good fitness with the mathematical model with a mean absolute error of 0.9%. Moreover, four building simulation tools were selected in this study in order to compare their results with the ANN predicted energy consumption: Energy_10, Green Building Studio web tool, eQuest and EnergyPlus. The results showed that the more detailed simulation tools have the best simulation performance in terms of heating and cooling electricity consumption within 3% of mean absolute error.  相似文献   

20.
对热舒适、空气感觉质量及能耗的模拟研究   总被引:5,自引:3,他引:5  
室内空调设计温度和新风量对热舒适,室内空气质量及能耗量有重要影响,然而对它们之间相互关系进行研究的文献却较少。通过计算机模拟空调系统在7种室内设计温度和7种新风量条件下的运行情况,得到不同的设计条件组合对热舒适、人体感觉空气质量及建筑能耗量的影响。基于这项分析,提出了此办公建筑合理的室内设计温度和新风量取值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号