首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Hofmann  J Ames  K Krome  V Faist 《Die Nahrung》2001,45(3):189-194
After thermal treatment of a mixture of glucose and glycine for 2 h at 125 degrees C, about 60% of the starting material was converted into non-soluble, black pigments, whereas 40% of the mixture was still water-soluble. Dialysis of the latter fraction revealed 30.4% of low molecular weight compounds (LMWs; MW < 10,000 Da) and 10.0% high-molecular weight products (HMWs; MW > or = 10,000 Da). The water-soluble Maillard reaction products (MRPs) were separated by gel permeation chromatography and ultrafiltration, revealing that 60% of the water-soluble products of the total carbohydrate/amino acid mixture had MWs < 1,000 Da and consisted mainly of non-coloured reaction products. MRPs with MWs between 1,000 and 30,000 Da were found in comparatively low yields (about 1.3%). In contrast, about 31.1% of the MRPs exhibited MWs > 30,000 Da, amongst which 14.5% showed MWs > 100,000 Da, thus indicating an oligomerisation of LMWs to melanoidins under roasting conditions. To investigate the physiological effects of these MRPs, xenobiotic enzyme activities were analysed in intestinal Caco-2 cells. For Phase-I NADPH-cytochrome c-reductase, the activity in the presence of the LMW and HMW fraction was decreased by 13% and 22%, respectively. Phase-II glutathione-S-transferase activity decreased by 15% and 18%, respectively, after incubation with the LMW and the HMW fractions. Considering the different yields, 30% and 10%, respectively, of the LMW and the HMW fractions, the total amount of the LMW fraction present in the glucose-glycine mixture is more active in modulating these enzyme activities than that of the HMW fraction.  相似文献   

2.
The prevalence of colloid deposition at grain-to-grain contacts in two porous media (spherical glass beads and angular quartz sand, 710-850 microm) was examined using X-ray microtomography (XMT) under conditions where the colloid-grain surface interaction was solely attractive (lacking an energy barrier to deposition), and under fluid velocity conditions representative of engineered filtration systems. XMT allows pore-scale observation of colloid deposition over assemblage-scale porous media domains. Colloids visible in reconstructed images were prepared by coating gold on hollow ceramic microspheres (36 microm in size) (to render densities only slightly higher than water). A significant fraction of the deposited microspheres were deposited at grain-to-grain contacts (about 20% in glass beads, 40% in quartz sand) under the conditions examined. The deposited microsphere concentrations decreased log-linearly with increasing transport distance regardless of the environment of deposition (grain-to-grain contact versus single-contact deposition). The profile shape was, therefore, consistent with filtration theory, and the observed deposition rate coefficients were also well predicted by filtration theory. The ability of filtration theory to predict the magnitude and spatial distribution of deposition demonstrates that filtration theory captures the essential elements of deposition in the absence of an energy barrier despite a lack of accounting for grain-to-grain contacts. The observed factor of 2 greater deposition at grain-to-grain contacts in quartz sand relative to equivalently sized glass beads is consistent with greater grain-to-grain contact lengths and greater fraction of small pores in the quartz sand relative to the glass beads, as determined via a pore structure analysis algorithm (medial axis algorithm).  相似文献   

3.
This paper reports on extensive polychlorinated biphenyl (PCB) dechlorination measured in Lake Hartwell (Pickens County, SC) sediments. Vertical sediment cores were collected from 18 locations in Lake Hartwell (Pickens County, SC) and analyzed in 5-cm increments for PCB congeners. The preferential loss of meta and para chlorines with sediment depth demonstrated that PCBs in the sediments underwent reductive dechlorination after burial. Notably, ortho chlorines were highly conserved for more than 5 decades; since the first appearance of PCBs, ca. 1950-1955. These dechlorination characteristics resulted in the accumulation of lower chlorinated congeners dominated by ortho chlorine substituents. Dechlorination rates were determined by plotting the numbers of meta plus para chlorines per biphenyl molecule (mol of chlorine/mol of PCB) with sediment age. Regression analyses showed linear correlations between meta plus para chlorine concentrations with time. The average dechlorination rate was 0.094 +/- 0.063 mol of Cl/mol of PCB/yr. The rates measured using the 2001 cores were approximately twice those measured using the 2000 cores, most likely because the 2001 cores were collected only at transects O, L, and I, which had the highest rates measured in 2000. An inverse of the dechlorination rates indicated that 16.4 +/- 11.6 yr was required per meta plus para chlorine removal (ranging from 4.3 to 43.5 yr per chlorine removal). The rates determined from this study were 1-2 orders of magnitude lower than rates reported from laboratory microcosm studies using Hudson River and St. Lawrence River sediments, suggesting that dechlorination rates reported for laboratory experiments are much higher than those occurring in situ.  相似文献   

4.
Poly(vinyl chloride) (PVC) was ground in air with CaO in the presence of quartz powder as a grinding aid by a small-scale planetary ball mill to investigate the relation of the dechlorination rate of PVC with the impact energy of the balls calculated from a computer simulation based on the Discrete Element Method under various conditions. Mechanochemical dechlorination proceeds as the grinding progresses and is improved with an increase in both the mill speed and the amount of balls introduced into the mill. The same trend can be seen in the relation between the specific normal impact energy of the balls and the rotational speed. The relationship between the observed dechlorination rate and the computed normal impact energy of the balls is linear, with a correlation coefficient of 0.965. This relationship can be used to estimate the dechlorination rate of PVC in a large-scale planetary ball mill.  相似文献   

5.
A novel combination of noninvasive imaging with an oxygen sensitive fluorescent indicator was developed to investigate the biodegradation processes occurring at the fringe of a solute plume, where the supply of oxygen was limited. A thin transparent porous matrix (156 x 120 x 3 mm) was made from quartz plates and quartz sand (212-300 microm) and enriched with acetate-degrading bacteria. A degrading plume developed from a continuous acetate source in the uniform flow field containing dissolved oxygen. Ruthenium (II)-dichlorotris(1,10-phenanthroline) (Ru(phen)3Cl2), a water-soluble fluorescent dye, was used as an indicator of dissolved oxygen. The fluorescence intensity was dependent on the concentration of oxygen because the dissolved oxygen acted as collisional quencher. The oxygen distribution was interpreted from images recorded by a CCD camera. These two-dimensional experimental results showed quantitatively how the oxygen concentrations decreased strongly at the narrow plume fringe and that oxygen was depleted at the core of the plume. Separately, dispersivity was measured in a series of nonreactive transport experiments, and biodegradation parameters were evaluated by batch experiments. Two-dimensional numerical simulations with MT3D/RT3D used these parameters, and the predicted oxygen distributions were compared with the experimental results. This measurement method provides a novel approach to investigate details of solute transport and biodegradation in porous media.  相似文献   

6.
张艳  严利民  高萍 《食品与机械》2006,22(3):139-141
牛奶或奶粉中的亚硝酸盐、硝酸盐及氯化物经溶解稀释后可直接进样至离子色谱仪中进行测定;样品中加入亚硝酸盐、硝酸盐及氯化物标准后测定,两者的准确度及精密度均取得满意结果。6份样品采用本方法测定结果与国家标准[GB/T5413.32-1997及GB/T5413.32-1997(第二法)]采用的方法测定结果比较无显著性差异:  相似文献   

7.
Reductive dechlorination of chlorobenzene (PhCl), trichloroethylene (TCE), tetrachloroethylene (PCE), 1- and 2-chlorobutanes, chloroform, carbon tetrachloride, and 1,1,1- and 1,1,2-trichloroethanes adsorbed on molecular sieve 13X was investigated. The molecular sieve adsorbing the organic chlorides was irradiated with gamma-rays, heated, or allowed to stand at room temperature in a sealed ampule and was then soaked in water. The dechlorination yields were determined from the Cl- concentrations of the supernatant aqueous solutions. It was found that the chlorinated alkanes adsorbed on the molecular sieve are readily dechlorinated on standing at room temperature. The dechlorination at room temperature was limited for TCE and PCE. PhCl was quite stable even at 200 degrees C. gamma-Radiolysis was examined for PhCl, TCE, and PCE at room temperature. The radiation chemical yields of the dechlorination, G(Cl-), were 1.9, 40, and 30 for PhCl, TCE, and PCE, respectively. After 5 h of heating at 200 degrees C, the dechlorination yields for TCE and PCE were 24.5 and 4.3%, respectively. TCE is much more reactive than PCE in the thermal dechlorination, whereas their radiolytic dechlorination yields are comparable. The pH of the supernatant solutions decreased along with the dechlorination.  相似文献   

8.
Manganese oxidation induced by water table fluctuations in a sand column   总被引:1,自引:0,他引:1  
On-off cycles of production wells, especially in bank filtration settings, cause oscillations in the local water table, which can deliver significant amounts of dissolved oxygen (DO) to the shallow groundwater. The potential for DO introduced in this manner to oxidize manganese(II) (Mn(II)), mediated by the obligate aerobe Pseudomonas putida GB-1, was tested in a column of quartz sand fed with anoxic influent solution and subject to 1.3 m water table changes every 30-50 h. After a period of filter ripening, 100 μM Mn was rapidly removed during periods of low water table and high dissolved oxygen concentrations. The accumulation of Mn in the column was confirmed by XRF analysis of the sand at the conclusion of the study, and both measured net oxidation rates and XAS analysis suggest microbial oxidation as the dominant process. The addition of Zn, which inhibited GB-1 Mn oxidation but not its growth, interrupted the Mn removal process, but Mn oxidation recovered within one water table fluctuation. Thus transient DO conditions could support microbially mediated Mn oxidation, and this process could be more relevant in shallow groundwater than previously thought.  相似文献   

9.
Nanosized Fe0 exhibits markedly different anaerobic corrosion rates in water compared to that disseminated in moist quartz sand. In water, hydrogen production from corrosion exhibits an autocatalytic style, attaining a maximum rate of 1.9 mol kg(-1) d(-1) within 2 d of reaction. The rate then drops sharply over the next 20 d and enters a period of uniformly decreasing rate, represented equally well by first-order or diffusion-controlled kinetic expressions. In quartz sand, hydrogen production exhibits a double maximum over the first 20 d, similar to the hydration reaction of Portland cement, and the highest rate attained is less than 0.5 mol kg(-1) d(-1). We ascribe this difference in early time corrosion behavior to the ability of the released hydrogen gas to convect both water and iron particles in an iron/water system and to its inability to do so when the iron particles are disseminated in sand. By 30 d, the hydrogen production rate of iron in quartz sand exhibits a uniform decrease as in the iron/water system, which also can be described by first-order or diffusion-controlled kinetic expressions. However, the corrosion resistance of the iron in moist sand is 4 times greater than in pure water (viz. t1/2 of 365 d vs 78 d, respectively). The lower rate for iron in sand is likely due to the effect of dissolved silica sorbing onto iron reaction sites and acting as an anodic inhibitor, which reduces the iron's susceptibility to oxidation by water. This study indicates that short-term laboratory corrosion tests of nanosized Fe0/water slurries will substantially underestimate both the material's longevity as an electron source and its potential as a long-term source of hydrogen gas in groundwater remediation applications.  相似文献   

10.
The role of lipopolysaccharides (LPS) in bacterial adhesion was investigated via atomic force microscopy (AFM). Adhesion between a silicon nitride tip and Escherichia coli JM109 was measured in water and 0.01 M phosphate-buffered saline (PBS) on untreated cells and on a sample of E. coli treated with 100 mM ethylenediaminetetraacetic acid (EDTA), which removes approximately 80% of the LPS molecules. LPS removal decreased the adhesion affinity between the bacterial cells and the AFM tip from -2.1 +/- 1.8 to -0.40 +/- 0.36 nN in water and from -0.74 +/- 0.44 to -0.46 +/- 0.23 nN in 0.01 M PBS (statistically different, Mann-Whitney rank sum test, P < 0.01). The distributions of adhesion affinities between E. coli LPS macromolecules and the AFM tip could be described by gamma distribution functions. Direct measurements of the adhesive force between E. coil and a surface were compared with adhesion in batch and column experiments, and agreement was observed between the influences of LPS on adhesion in each system. Bacterial batch retention to glass or in packed beds to quartz sand decreased after LPS removal. When interaction forces were measured during the approach of the AFM tip to a bacterium, steric repulsive forces were seen for both treated and untreated cells, but the repulsion was greater when the LPS was intact A model for steric repulsion predicted a reduction of the equilibrium length of the surface polymers from 242 to 64 nm in water and from 175 to 81 nm in buffer, after removal of a portion of the LPS. DLVO calculations based on conventional and soft-particle DLVO theories predicted higher energy barriers to adhesion for all surfaces after LPS removal, consistent with experimental findings. Adhesion forces between the AFM tip and bacterial polymers were correlated with bacterial attachment and retention, while measurements of interaction forces during the approach of the AFM tip to the bacterium did not correlate with subsequent adhesion behavior to glass or quartz sand.  相似文献   

11.
采用球磨法对灵芝孢子粉进行破壁处理,测定对比灵芝孢子粉破壁前后的水分、粗蛋白、粗脂肪和灰分的溶出量,粗多糖和总三萜的生物活性物质溶出量,测定分析了水、醇提取物DPPH·、ABTS·清除能力和还原能力。结果表明:灵芝孢子粉破壁前后水分和灰分变化不显著,粗蛋白溶出量增加了33.96%,粗脂肪溶出量提高了2.94倍;灵芝孢子粉粗多糖和总三萜活性物质溶出量分别增加了40.90%和55.21%;破壁后灵芝孢子粉抗氧化能力显著提高。  相似文献   

12.
To investigate the effect of decontamination treatment on the nutritional attributes of fresh-cut produce, fresh-cut slices of immature bell peppers were soaked in sodium hypochlorite solutions or slightly acidic electrolyzed water with varying concentrations of effective free chlorine. Changes in the residual ratios of the water-soluble nutrients, vitamin C (L-ascorbic acid, L-AsA) and potassium, were measured, as well as aerobic plate counts (APCs), after decontamination. The L-AsA ratios of the samples that were decontaminated with the sodium hypochlorite solutions exhibited a gradual decrease when higher concentrations of detergent and longer soaking times were employed. In contrast, the potassium ratio remained mostly constant around 50% after 1 min of soaking. A decrease in the L-AsA ratio to 80% was observed within 5 min of a soak in deionized water (a 0 ppm solution). Soakings in the slightly acidic electrolyzed water also resulted in a decrease in L-AsA ratios, yet the trend was not similar to that associated with the sodium hypochlorite solutions. These results indicate that water-soluble nutrient contents of fresh-cut produce decrease during a decontamination process that uses chlorine-based solutions according to the free chlorine concentration and the soaking time. Moreover, the reduction in nutrient content varied depending on the disinfectant used, even if the free chlorine concentration was the same for the different disinfectants.  相似文献   

13.
提高挤压膨化糙米粉的冲调分散性   总被引:1,自引:0,他引:1  
马涛  卢镜竹 《食品工业科技》2012,33(5):277-279,284
挤压膨化糙米粉冲调后具有营养丰富,米香突出,口感细腻爽滑等特点,但糊液粘稠度高,分散性差等带来食用上的不便。测得挤压膨化糙米粉稳定性好,分散性差。通过正交实验得出:挤压膨化糙米粉60目及添加麦芽糊精15%,蔗糖酯0.12%,单甘酯0.55%,可明显提高挤压膨化糙米粉冲调的分散性,改善其冲调性能。  相似文献   

14.
研究了亚硫酸钠、亚硫酸氢钠、二氧化硫、焦亚硫酸钠和硫代硫酸钠等脱氯剂对城市污水厂氯消毒出水的脱氯效果.结果表明:亚硫酸氢钠的脱氯效果最好,反应10 min,氯脱除率即达100%;脱氯过程均存在分步反应,反应最初1 min内,余氯下降很快;1 min后为一级反应,且反应速率很低,有机氯胺和一氯胺的脱除是反应的限制因素.脱氯反应不会对最终出水的细菌和大肠杆菌指标产生不利影响.经济分析表明,达到同样的脱氯效果,二氧化硫脱氯工艺的药剂成本最低.  相似文献   

15.
Fe(II) associated with iron-containing minerals has been shown to be a potential reductant in natural subsurface environments. While it is known that the surface-bound iron species has the capacity to dechlorinate various chlorinated compounds, the role of transition metals to act as catalysts with these iron species is of importance. We previously observed that the reduction of Cu(II) by Fe(II) associated with goethite enhanced the dechlorination efficiency of chlorinated compound. In this study, the reductive dechlorination of carbon tetrachloride (CCl4) by dissolved Fe(II) in the presence of Cu(II) ions was investigated to understand the synergistic effect of Fe(II) and Cu(II) on the dechlorination processes in homogeneous aqueous solutions. The dechlorination efficiency of CCl4 by Fe(II) increased with increasing Cu(II) concentrations over the range of 0.2-0.5 mM and then decreased at high Cu(II) concentrations. The efficiency and rate of CCl4 dechlorination also increased with increasing dissolved Fe(II) concentration in the presence of 0.5 mM Cu(II) at neutral pH. When the Fe(II)/Cu(II) ratio varied between 1 and 10, the pseudo-first-order rate constant (k(obs)) increased 250-fold from 0.007 h(-1) at 0.5 mM Fe(II) to 1.754 h(-1) at 5 mM Fe(II). X-ray powder diffraction and scanning electron microscopy analyses showed that Cu(II) can react with Fe(II) to produce different morphologies of ferric oxides and subsequently accelerate the dechlorination rate of CCl4 at a high Fe(II) concentration. Amorphous ferrihydrite was observed when the stoichiometric Fe(II)/Cu(II) ratio was 1, while green rust, goethite, and magnetite were formed when the molar ratios of Fe(II)/Cu(II) reached 4-6. In addition, the dechlorination of CCl4 by dissolved Fe(II) is pH dependent. CCl4 can be dechlorinated by Fe(II) over a wide range of pH values in the Cu(II)-amended solutions, and the k(obs) increased from 0.0057 h(-1) at pH 4.3 to 0.856 h(-1) at pH 8.5, which was 9-25 times greater than that in the absence of Cu(II) at pH 7-8.5. The high reactivity of dissolved Fe(II) on the dechlorination of CCl4 in the presence of Cu(II) under anoxic conditions may enhance our understanding of the role of Fe(II) and the long-term reactivity of the zerovalent iron system in the dechlorination processes for chlorinated organic contaminants.  相似文献   

16.
A mass balance and kinetic investigation of anaerobic dechlorination of pentachlorophenol (PCP) was undertaken using an enriched microbial consortium in a laboratory scale continuous flow column, as a model microbial permeable reactive barrier. The chlorine balance showed that 50 µM PCP was largely dechlorinated to phenol with the formation of a small quantity of 3-chlorophenol as an intermediate metabolite (hydraulic retention time 7.6 days), and the chlorine removal efficiency reached 36 µM d-1. When the initial PCP concentration was increased to 100 µM the chlorine removal efficiency increased 1.5 times. However, the dechlorination activity disappeared after 7.4 pore volumes (58 days), demonstrating the susceptibility of the dechlorination culture to high concentrations of PCP. Lactate released hydrogen as an electron donor during PCP dechlorination, with acetate, propionate, CO2 and CH4 as byproducts. The carbon balance showed that some of the organic carbon source (PCP, lactate) in the influent was converted to gas and utilized for biomass growth in addition to organic metabolites. The kinetic study was conducted in a batch culture and yielded 1.99 mg l-1 biomass growth per unit of chlorine consumption (µM). The Monod equation was well fitted to the specific growth rate of 1.38 d-1 and a half saturation constant of 0.29 µM. The organic chlorine removal rate in the batch culture was consistent with the results in the flow column, indicating the feasibility of and potential for in situ estimation and prediction through batch culture studies.  相似文献   

17.
Chlorine isotope fractionation during reductive dechlorination of trichloroethene (TCE) and tetrachloroethene (PCE) to cis-1,2-dichloroethene (cDCE) by anaerobic bacteria was investigated. The changes in the 37Cl/35Cl ratio observed during the one-step reaction (TCE to cDCE) can be explained by the regioselective elimination of chlorine accompanied by the Rayleigh fractionation. The fractionation factors (alpha) of the TCE dechlorination by three kinds of anaerobic cultures were approximately 0.994-0.995 at 30 degrees C. The enrichment of 37Cl in the organic chlorine during the two-step reaction (PCE to cDCE) can be explained by the random elimination of one chlorine atom in the PCE molecule followed by the regioselective elimination of one chlorine atom in the TCE molecule. The fractionation factors for the first step of the PCE dechlorination with three kinds of anaerobic cultures were estimated to be 0.987-0.991 at 30 degrees C using a mathematical model. Isotope fractionation during the first step would be the primary factor for the chlorine isotope fractionation during the PCE dechorination to cDCE. The developed models can be utilized to evaluate the fractionation factors of regioselective and multistep reactions.  相似文献   

18.
Laboratory microcosm experiments were performed to determine whether chlorine-exposed Escherichia coli are capable of recovery (i.e., increase in numbers of culturable cells) in estuarine waters and if so what water-quality parameters are responsible for this recovery. Suspensions of E. coli were exposed to 0.5 mg L(-1) of chlorine for 5 min followed by dechlorination with sodium thiosulfate. The chlorine-exposed bacteria were introduced into 2-L microcosms containing estuarine water collected from the Seacoast region of New Hampshire. Culturable cells in the microcosms were enumerated at 0, 10, 24, 48, and 74 h. In all estuarine microcosms the number of culturable cells increased by factors ranging from 2.8 to 50 over the 74-h incubation period. Multiple linear regression analyses indicated that ammonium and salinity were most significantly correlated with the recovery of E. coli over the 74-h incubation period; however, ammonium concentrations were strongly correlated with dissolved organic carbon and total dissolved nitrogen, making it impossible to determine with any degree of certainty the unique effect nitrogen or carbon had on recovery. The extensive recovery observed in our study indicates that following exposure to concentrations of chlorine that cause cell injury rather than death, numbers of culturable E. coli may increase significantly when discharged into estuarine waters. Thus, depending on the effectiveness of the chlorination process, the regular monitoring of chlorinated wastewater treatment effluent may underestimate the true impact on water-quality and public health risks.  相似文献   

19.
Quantum dots (QDs) are one example of engineered nanoparticles (ENPs) with demonstrated toxic effects. Yet, little is known about the behavior of QDs in the natural environment. This study assessed the transport of two commercial carboxylated QDs (CdTe and CdSe) and carboxylated polystyrene latex (nPL) as a model nanoparticle using saturated laboratory-scale columns. The influence of solution ionic strength (IS) and cation type (K(+) or Ca(2+)) on the transport potential of these ENPs was examined in two granular matrices - quartz sand and loamy sand. The retention of all three particles was generally low in the quartz sand columns within the range of studied IS (0.1-100 mM) for the monovalent salt (KCl). In contrast, the retention of the three ENPs in the quartz sand was significant in the presence of 10 mM Ca(2+). Moreover, ENP attachment efficiencies (α) were enhanced by at least 1 order of magnitude in columns packed with loamy sand (for IS between 0.1-10 mM KCl). Although all three ENPs used here are carboxylated, they differ in the type of surface coating (e.g., choice of polymers or polyelectrolytes). Regardless of the surface coatings, the three ENPs exhibit comparable mobility in the quartz sand. However, the ENPs demonstrate variable transport potential in loamy sand suggesting that differences in the binding affinities of surface-modified ENPs for specific soil constituents can play a key role in the fate of ENPs in soils.  相似文献   

20.
Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号