首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nonionic surfactant chain length on the properties of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+) where bpy = 2,2'-bipyridine) electrochemiluminescence (ECL) have been investigated. The electrochemistry, photophysics, and ECL of Ru(bpy)3(2+) in the presence of a series of nonionic surfactants are reported (Triton X-100, 114, 165, 405, 305, and 705-70). These surfactants differ in the number of poly(ethylene oxide) units incorporated into the surfactant molecule. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in aqueous surfactant solution. Increases in ECL efficiency (> or = 5-fold) and TPrA oxidation current (> or = 2-fold) have been observed in surfactant media. Slight decreases in ECL intensity are observed as the chain length of the nonionic surfactant increases. The data supports adsorption of surfactant on the electrode surface, thus facilitating TPrA and Ru(bpy)3(2+) oxidation and leading to higher ECL efficiencies.  相似文献   

2.
The effects of metal ions on the electrochemiluminescence (ECL) properties of (bpy)2Ru(AZA-bpy) (bpy = 2,2'-bipyridine; AZA-bpy = 4-(N-aza-18-crown-6-methyl-2,2'-bipyridine) have been investigated. The electrochemistry, photophysics and ECL of Ru(bpy)3(2+) in the presence of Pb2+, Hg2+, Cu2+, and K+ are reported. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in 50:50 (v/v) CH3CN:H2O solution. Increases in ECL efficiency (photons generated per redox event) up to 20-fold that depend on both the concentration and nature of the metal ion have been observed, making this an interesting system for electrochemiluminescence metal ion sensing.  相似文献   

3.
The electrochemiluminescence (ECL) of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution is reported. ECL is generated by complexing aluminum ions with the chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQS) to form Al(HQS)3, followed by oxidation in the presence of tri-n-propylamine (TPrA). The ECL intensity peaks a potential corresponding to oxidation of both TPrA and Al(HQS)3, and the ECL emission spectrum (lambda(max) = 499 nm) matches the photoluminescence emission spectrum, indicating that the emission is from a Al(HQS)3* excited state. ECL efficiencies (phi(ecl), photons generated per redox event) of 0.002 using Ru(bpy)3(2+) (phi(ecl) = 1) as relative standard. Conditions for ECL emission were optimized and used to generate a calibration curve that was linear over the 7 x 10(-6)-4 x 10(-4) M (5-281 mg/L (ppm)) range with a theoretical limit of detection of 1 ppm. The ECL of several metal ions other than aluminum with HQS and effects on Al(HQS)3 ECL were also examined.  相似文献   

4.
Zhang L  Dong S 《Analytical chemistry》2006,78(14):5119-5123
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)3(2+)-doped silica (RuDS) nanoparticles conjugated with a biopolymer chitosan membrane was developed. These uniform RuDS nanoparticles (approximately 40 nm) were prepared by a water-in-oil microemulsion method and were characterized by electrochemical and transmission electron microscopy technology. The Ru(bpy)3(2+)-doped interior maintained its high ECL efficiency, while the exterior nanosilica prevented the luminophor from leaching out into the aqueous solution due to the electrostatic interaction. This is the first attempt to branch out the application of RuDS nanoparticles into the field of ECL, and since a large amount of Ru(bpy)3(2+) was immobilized three-dimensionally on the electrode, the Ru(bpy)3(2+) ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. This sensor shows a detection limit of 2.8 nM for tripropylamine, which is 3 orders of magnitude lower than that observed at a Nafion-based ECL sensor. Furthermore, the present ECL sensor displays outstanding long-term stability.  相似文献   

5.
The effects of the nonionic surfactant Triton X-100 (poly(ethylene glycol) tert-octylphenyl ether) on the properties of tris(2-phenylpyridine)iridium(III) (Ir(ppy)3, where ppy = 2-phenylpyridine, electrochemiluminescence (ECL) have been investigated. Anodic oxidation of Ir(ppy)3 produces ECL in the presence of tri-n-propylamine (TPrA) in aqueous surfactant solution. Increases in ECL efficiency (> or = 10-fold) and TPrA oxidation current (> or = 2.0-fold) have been observed in surfactant media. The data support adsorption of surfactant on the electrode surface, thus facilitating TPrA and Ir(ppy)3 oxidation and leading to higher ECL efficiencies.  相似文献   

6.
The electrochemistry, UV-vis absorption, photoluminescence (PL), and coreactant electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (where bpy=2,2'-bipyridine) have been obtained in a series of hydroxylic solvents. The solvents included fluorinated and nonfluorinated alcohols and alcohol/water mixtures. Tri-n-propylamine was used as the oxidative-reductive ECL coreactant. Blue shifts of up to 30 nm in PL emission wavelength maximums are observed compared to a Ru(bpy)3(2+)/H2O standard due to interactions of the polar excited state (i.e., *Ru(bpy)3(2+)) with the solvent media. For example, Ru(bpy)3(2+) in water has an emission maximum of 599 nm while in the more polar hexafluoropropanol and trifluoroethanol it is 562 and 571 nm, respectively. ECL spectra are similar to PL spectra, indicating the same excited state is formed in both experiments. The difference between the electrochemically reversible oxidation (Ru(bpy)3(2+/3+)) and first reduction (Ru(bpy)2(2+/1+)) correlates well with the energy gap observed in the luminescence experiments. Although the ECL is linear in all solvents with [Ru(bpy)3(2+)] ranging from 100 to 0.1 nm, little correlation between the polarity of the solvent and the ECL efficiency (phiecl=number of photons per redox event) was observed. However, dramatic increases in phiecl ranging from 6- to 270-fold were seen in mixed alcohol/water solutions.  相似文献   

7.
The electrochemical and electrochemiluminescence (ECL) properties of Cu[dmp]2+ (dmp = 2,9-dimethyl-1,10-phenanthroline) have been investigated. ECL has been observed for Cu(dmp)2+ in aqueous, nonaqueous, and mixed solvent solutions using tri-n-propylamine as an oxidative-reductive coreactant. The ECL intensity peaks at potential corresponding to oxidation of both the coreactant and Cu(dmp)2+. The peak potential corresponding to maximum ECL emission is approximately 500 mV more anodic than corresponding oxidative peak potentials, indicating that the ECL emission may be due to the formation of either the *Cu(dmp)2+ metal-to-ligand charge-transfer excited state or an excited-state product of Cu(dmp)2+ oxidation. ECL efficiencies (phiecl = photons generated per redox event) are solvent-dependent (phiecl (CH3CN) > phiecl (50:50 (v/v) CH3CN:H20) > phiecl (H2O)) and correspond fairly well with photoluminescence efficiencies. Increased ECL efficiencies (> or = 50-fold) are observed in the presence of the nonionic surfactant Triton X-100.  相似文献   

8.
The electrochemiluminescence (ECL) of Os(phen)2(dppene)2+ (phen = 1,10-phenanthroline and dppene = bis(diphenylphosphino)ethene) is reported in mixed CH3CN/H2O (50:50 v/v) and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl) = photons emitted/redox event) of 2.0 in aqueous, and 0.95 in mixed for Os(phen)2(dppene)2+ were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.094 and 0.053 were obtained in aqueous and mixed solutions, respectively, as compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately 584 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in aqueous and mixed solution, with theoretical detection limits (blank plus three times the standard deviation of the noise) of 16.9 nM in H2O and 0.29 nM in CH3CN/H2O (50:50 v/v).  相似文献   

9.
Zu Y  Bard AJ 《Analytical chemistry》2001,73(16):3960-3964
We describe the effect of electrode surface hydrophobicity on the electrochemical behavior and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/tripropylamine (TPrA) system. Gold and platinum electrodes were modified with different thiol monolayers. The hydrophobicity of the electrode surfaces changed with different terminal groups of the thiol molecules. The oxidation rate of TPrA was found to be much larger at the modified electrode with a more hydrophobic surface. The adsorption of neutral TPrA species on this kind of surface was assumed to contribute to the faster anodic kinetics. Due to the rapid generation of the highly reducing radical, TPrA., ECL intensity increased significantly at more hydrophobic electrodes. This electrode surface effect in the ECL analytical system allows one to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+). The surfactant effect on the ECL process was also examined and discussed based on the change of electrode hydrophobicity by the adsorption of surfactant species.  相似文献   

10.
The electrochemiluminescence (ECL) of Ir(ppy)3 (ppy = 2-phenylpyridine) is reported in acetonitrile (CH3CN), mixed CH3CN/H20 (50:50 v/v), and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl), photons emitted per redox event) of 0.00092 in aqueous, 0.0044 in mixed, and 0.33 in CH3CN solutions for Ir(ppy)3 were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.039, 0.050, and 0.069 were obtained in aqueous, mixed, and acetonitrile solutions, respectively, compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately equal to 517 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in mixed and acetonitrile solution with theoretical detection limits (blank plus three times the standard deviation of the noise) of 1.23 nM in CH3CN and 0.23 microM in CH3CN/ H20 (50:50 v/v).  相似文献   

11.
Choi HN  Cho SH  Lee WY 《Analytical chemistry》2003,75(16):4250-4256
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) immobilized in sol-gel-derived titania TiO2)-Nafion composite films coated on a glassy carbon electrode have been investigated. The electroactivity of Ru(bpy)3(2+) ion exchanged into the composite films and its ECL behavior were strongly dependent upon the amount of Nafion incorporated into the TiO2-Nafion composite films. The ECL sensor of Ru(bpy)32+ immobilized in a TiO2-Nafion composite with 50% Nafion content showed the maximum ECL intensities for both tripropylamine (TPA) and sodium oxalate in 0.05 M phosphate buffer solution at pH 7. Detection limits were 0.1 microM for TPA and 1.0 microM for oxalate (S/N = 3) with a linear range of 3 orders of magnitude in concentration. The present ECL sensor showed improved ECL sensitivity and long-term stability, as compared to the ECL sensors based on pure Nafion films. The present Ru(bpy)3(2+) ECL sensor based on TiO2-Nafion (50%) composite films was applied as an HPLC detector for the determination of erythromycin in human urine samples. The present Ru(bpy)3(2+) ECL sensor was stable in the mobile phase containing a high content of organic solvent (30%, v/v), in contrast to a pure Nafion-based Ru(bpy)3(2+) ECL sensor. The detection limit for erythromycin was 1.0 microM, with a linear range of 3 orders of magnitude in concentration.  相似文献   

12.
Sun X  Du Y  Dong S  Wang E 《Analytical chemistry》2005,77(24):8166-8169
A novel method for effective immobilization of Ru(bpy)3(2+) on an electrode surface is developed. The whole process involves two steps: the electrostatic interactions between citrate-capped gold nanoparticles (AuNPs) and Ru(bpy)3Cl2 in aqueous medium were used to fabricate Ru(bpy)(3)2+-AuNP aggregates (Ru-AuNPs) first, and then the Au-S interactions between as-formed Ru-AuNPs and sulfhydryl groups were used to effectively immobilize the Ru-AuNPs on a sulfhydryl-derivated indium tin oxide (ITO) electrode surface. As-prepared ITO electrode shows excellent stability, and the ECL active species Ru(bpy)3(2+) contained therein exhibit excellent ECL behaviors.  相似文献   

13.
Zu Y  Bard AJ 《Analytical chemistry》2000,72(14):3223-3232
We describe the electrogenerated chemiluminescence (ECL) processes of the Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/ tripropylamine (TPrA) system at glassy carbon, platinum, and gold electrodes. The electrochemical behavior of TPrA on different electrode materials and its influence on the ECL process are demonstrated. At glassy carbon electrodes, the direct oxidation of TPrA began at approximately 0.6 V vs SCE and exhibited a broad irreversible anodic peak. Two ECL waves were observed, one in the potential region more negative than 1.0 V vs SCE and one at more positive potentials. The first ECL process apparently occurs without the electrogeneration of Ru(bpy)3(3+), in contrast to that of the second ECL wave. At Pt and Au electrodes, however, the formation of surface oxides significantly blocked the direct oxidation of TPrA. An ECL wave below 1.0 V did not appear at Pt and was very weak at gold. The ECL peaks at potentials of 1.1-1.2 V were also much weaker than those observed at the glassy carbon electrode. These results showed that the direct oxidation of TPrA played an important role in the ECL processes. Therefore, the enhancement of the TPrA oxidation current might lead to an increase in the ECL intensity. Small amounts of halide species were found to inhibit the growth of surface oxides on Pt and gold electrodes and led to an obvious increase of TPrA oxidation current. The anodic dissolution of gold in halide-containing solution was also important in activating the gold electrode surface. The electrochemical catalytic effect of bromide further promoted the oxidation of TPrA. A halide effect on ECL at Pt and Au electrodes was also evident. The most effective enhancement of ECL was observed at Au electrode in a bromide-containing solution. This effect was also found in an commercial flow-through instrument (IGEN) and provided a simple way to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+).  相似文献   

14.
The voltammetry and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3 2+) ion-exchanged in Nafion and Nafion-silica composite materials have been investigated. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved reactivity and long-term stability. Nation-silica composite materials with varying contents of Nation (53-100 wt% relative to silica) were prepared via the two-step acid/base hydrolysis and condensation of tetramethoxysilane. The Nafion doped sols were spin cast on glassy carbon electrodes, dried, and then ion-exchanged with Ru(bpy)3 2+. The shapes of the cyclic voltammetric curves and the amount of Ru(bpy)3 2+ exchanged into the films strongly depends on the amount of Nafion incorporated into the hybrid sol. Nafion-silica films with a low content of Nafion ion-exchanged less Ru(bpy)3 2+ and exhibited tail-shaped voltammetry at 100 mV/s. The ECL of immobilized Ru(bpy)3 2+ in the presence of either tripropylamine or sodium oxalate in pH 5 acetate buffer was also strongly dependent on the amount of Nafion introduced into the composite with greater ECL observed for the Nafion-silica films relative to pure Nafion.  相似文献   

15.
Guo Z  Dong S 《Analytical chemistry》2004,76(10):2683-2688
The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films. The CNT/Nafion composite film-modified GC electrodes also exhibited long-term stability.  相似文献   

16.
Chi Y  Dong Y  Chen G 《Analytical chemistry》2007,79(12):4521-4528
Electrochemiluminescence (ECL) has been accepted by the analytical chemist as a powerful tool for detection of many inorganic and organic compounds. Ru(bpy)3 2+ has been the most popular ECL system, and many investigations have been focused on the application based on the enhancement or inhibition of Ru(bpy)3 2+ ECL system. However, not much attention has been paid to the theoretical investigation of this ECL system, especially to the inhibiting mechanism for the Ru(bpy)3 2+ ECL system. In the present study, many of the inorganic and organic compounds with electrochemical oxidation activity were found to strongly inhibit Ru(bpy)3 2+ ECL. To explain these inhibited ECL phenomena, a new "electrochemical oxidation inhibiting" mechanism has been proposed via the establishment of a corresponding model. The effects of applied potential, uncompensated resistance, and concentration of inhibitor on the inhibited ECL derived from the model have been verified by experiments. The new ECL inhibition mechanism can be commonly used to explain many kinds of inhibited ECL presently observed, and it is envisioned to result in finding of more inhibitors of this type and establishment of new sensitive ECL detection methods for them.  相似文献   

17.
Shi L  Liu X  Li H  Xu G 《Analytical chemistry》2006,78(20):7330-7334
A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)3(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)3(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)3(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L(-1) using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L(-1) at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by approximately 3 orders of magnitude, which is the most sensitive Ru(bpy)3(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)3(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.  相似文献   

18.
Here, we describe a new approach for detecting redoxactive targets by electrochemical oxidation and reporting their presence by electrogenerated chemiluminescence (ECL) based on electrochemical oxidation of Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and tripropylamine (TPA). This new strategy, which complements our previous reports of using ECL to signal the presence of targets undergoing electrochemical reduction, takes advantage of many of the attractive attributes of microfluidic-based electrochemical cells. These attributes include close proximity of multiple flow channels and electrodes, ability to move reagents through channels under laminar flow conditions, and the capacity to precisely place device components relative to one another using photolithography. Specifically, the microfluidic electrochemical sensor described here consists of three channels. The analyte and ECL reporting cocktail flow through separate channels, but they share a common anode. The cathode resides in a channel containing a sacrificial reductant. In this configuration, the target analyte competes with Ru(bpy)3(2+) and TPA to provide electrons for the reductant. Accordingly, in this competitive assay approach, the presence of the analyte is signaled as a lowering of the ECL intensity. In this report, the device performance characteristics are reported, and the detection of both ferrocyanide and dopamine is demonstrated at micromolar concentrations.  相似文献   

19.
Ascorbic (H2A) and dehydroascorbic (DA) acids were for the first time directly determined in a single chromatographic run by means of the tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)(3)2+) based electrogenerated chemiluminescence (ECL) detection. For the first time, it was demonstrated that DA, a nonelectroactive compound, is ECL active and is responsible for the ECL behavior of H2A. This fact, together with the lack of a DA standard, suggested the use of a calibration graph obtained for H2A, for determining both analytes. The proven ECL activity of DA, together with literature data relative to the standard redox potentials of the different species coming from H2A, led to a reconsideration of the proposed ECL reaction mechanism for H2A. The role of the OH- ion in the reaction mechanism of the two analytes appeared to be crucial. H2A and DA could be separated by a suitable C18-reversed-phase HPLC column using an aqueous 30 mM H3PO4 solution as the mobile phase. The optimal ECL response was achieved by polarizing the working electrode at 1.150 Vvs SCE (standard calomel electrode) (oxidation diffusion limiting potential for both H2A and Ru(bpy)(3)2+). The Ru(bpy)(3)2+ solution, at pH 10 for carbonate buffer, was mixed to the eluent solution in a postcolumn system, obtaining, still at pH 10, the final 0.25 mM Ru(bpy)(3)2+ concentration. The detection limit found for the two analytes was 1 x 10(-7) M. The method was successfully applied to the determination of the analytes in a commercially available orange fruit juice.  相似文献   

20.
Electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) in water only, without any added electrolyte or reducing agents, has been obtained at carbon interdigitated microelectrode arrays (C-IDAs) of 2 μm width and spacing. In a generation/collection biasing mode, ECL can be clearly seen with the naked eye in normal room lighting at concentrations greater than 1 mM. Using a conventional photomultiplier tube (PMT), a detection limit of 10(-)(7) M Ru(bpy)(3)(2+) has been achieved for an electrode area of 0.25 mm(2). In comparison, the ECL intensity produced at Pt-IDA of the same geometry, under identical experimental conditions, was more than 300 times less. The ECL obtained at C-IDAs is attributed to the annihilation reaction of the reduced and oxidized forms of the Ru(bpy)(3)(2+) made possible due to the small electrode spacing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号