首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the role of hexose transporters in a Saccharomyces cerevisiae strain derived from an industrial wine strain by carrying out a functional analysis of HXT genes 1-7 under enological conditions. A strain in which the sugar carrier genes HXT1-HXT7 were deleted was constructed and the HXT genes were expressed individually or in combination to evaluate their role under wine alcoholic fermentation conditions. No growth or fermentation was observed in winemaking conditions for the hxt1-7 delta strain. The low-affinity carriers Hxt1 and Hxt3 were the only carriers giving complete fermentation of sugars when expressed alone, indicating that these carriers play a predominant role in wine fermentation. However, these two carriers have different functions. The Hxt3 transporter is thought to play a major role, as it was the only carrier that gave an almost normal fermentation profile when produced alone. The hxt1 carrier was much less effective during the stationary phase and its role is thought to be restricted to the beginning of fermentation. The high-affinity carriers Hxt2, Hxt6 and/or Hxt7 were also required for normal fermentation. These high-affinity transporters have different functions: hxt2 is involved in growth initiation, whereas Hxt6 and/or Hxt7 are required at the end of alcoholic fermentation. This work shows that the successful alcoholic fermentation of wine involves at least four or five hexose carriers, playing different roles at various stages in the fermentation cycle.  相似文献   

2.
3.
4.
Four kinds of transporters, HXT1 and HXY7 from Saccharomyces cerevisiae, and GXF1 and GXS1 from Candida intermedia, were overexpressed in xylose-metabolizing S. cerevisiae harboring a xyloseisomerase-based pathway. Overexpression of transporter enhanced sugar consumption and ethanol production, and GXF1 was efficient for ethanol fermentation from both glucose and xylose.  相似文献   

5.
6.
Perennial ryegrass (Lolium perenne L) was ensiled in laboratory silos after addition of glucose or xylose at rates of 0, 25, 35 and 45 g kg?1 fresh grass. In addition, an inoculum of Lactobacillus plantarum, supplying 106 organisms g?1 fresh grass, was applied to all treatments. Silos were opened after 7, 21 and 100 days and the silage was subjected to chemical and microbiological analysis. AH silages were well fermented with pHs between 3·60 and 3·70 and low NH3-N concentrations (<95 g kg?1 total nitrogen) and an absence of butyric acid. Glucose was virtually completely consumed within 21 days but 0·30–0·50 of the xylose doses remained after 100 days. Lactic acid concentrations were not increased by the addition of sugars, but the glucose treatments were associated with very high concentrations of ethanol, 60–100 g kg?1 DM, and the xylose additions produced very high concentrations of acetic acid, 60–135 g kg?1 DM. Most(>0·80) of the glucose that disappeared could be accounted for in ethanol formation but the xylose consumed could be accounted for only if the lactic acid produced in its fermentation was metabolised further to acetic acid; indeed, for the two higher doses of xylose, the concentrations of lactic acid were reduced from the control value of 177 g kg?1 DM to 140 and 120 g kg?1 DM, respectively. The results indicate that the provision of extra sugar, as hexose or pentose, allows yeasts to assume a more prominent role in the fermentation with consequent wasteful fermentation of sugars. Furthermore, the suggestion is that xylose may indirectly, via a stimulation of lactate-assimilating yeasts, encourage further metabolism of lactic acid to acetic acid.  相似文献   

7.
Introduction of the xylose pathway from Pichia stipitis into Saccharomyces cerevisiae enables xylose utilization in recombinant S. cerevisiae. However, xylitol is a major by-product. An endogenous aldo-keto reductase, encoded by the GRE3 gene, was expressed at different levels in recombinant S. cerevisiae strains to investigate its effect on xylose utilization. In a recombinant S. cerevisiae strain producing only xylitol dehydrogenase (XDH) from P. stipitis and an extra copy of the endogenous xylulokinase (XK), ethanol formation from xylose was mediated by Gre3p, capable of reducing xylose to xylitol. When the GRE3 gene was overexpressed in this strain, the xylose consumption and ethanol formation increased by 29% and 116%, respectively. When the GRE3 gene was deleted in the recombinant xylose-fermenting S. cerevisiae strain TMB3001 (which possesses xylose reductase and XDH from P. stipitis, and an extra copy of endogenous XK), the xylitol yield decreased by 49% and the ethanol yield increased by 19% in anaerobic continuous culture with a glucose/xylose mixture. Biomass was reduced by 31% in strains where GRE3 was deleted, suggesting that fine-tuning of GRE3 expression is the preferred choice rather than deletion.  相似文献   

8.
HXT5 expression is determined by growth rates in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
In the yeast Saccharomyces cerevisiae, hexose transporter (Hxt) proteins transport glucose across the plasma membrane. The Hxt proteins are encoded by a multigene family with 20 members, of which Hxt1-4p and Hxt6-7p are the major hexose transporters. The remaining Hxt proteins have other or unknown functions. In this study, expression of HXT5 under different experimental set-ups is determined. In glucose-grown batch cultures, HXT5 is expressed prior to glucose depletion. Independent of the carbon source used in batch cultures, HXT5 is expressed after 24 h of growth and during growth on ethanol or glycerol, which indicates that growth on glucose is not necessary for expression of HXT5. Increasing the temperature or osmolarity of the growth medium also induces expression of HXT5. In fed-batch cultures, expression of HXT5 is only observed at low glucose consumption rates, independent of the extracellular glucose concentration. The only common parameter in these experiments is that an increase of HXT5 expression is accompanied by a decrease of the growth rate of cells. To determine whether HXT5 expression is determined by the growth rate, cells were grown in a nitrogen-limited continuous culture, which enables modulation of only the growth rate of cells. Indeed, HXT5 is expressed only at low dilution rates. Therefore, our results indicate that expression of HXT5 is regulated by growth rates of cells, rather than by extracellular glucose concentrations, as is the case for the major HXTs. A possible function for Hxt5p and factors responsible for increased expression of HXT5 upon low growth rates is discussed.  相似文献   

9.
Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances, due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses both NADH and NADPH, is hypothesized to reduce the cofactor imbalance, allowing xylose fermentation in this yeast. However, unadapted S. cerevisiae strains expressing this XR grow poorly on xylose, suggesting that metabolism is still imbalanced, even under aerobic conditions. In this study, we investigated the possible reasons for this imbalance by deleting genes required for NADPH production and gluconeogenesis in S. cerevisiae. S. cerevisiae cells expressing the XR-XDH, but not a xylose isomerase, pathway required the oxidative branch of the pentose phosphate pathway (PPP) and gluconeogenic production of glucose-6-P for xylose assimilation. The requirement for generating glucose-6-P from xylose was also shown for Kluyveromyces lactis. When grown in xylose medium, both K. lactis and S. stipitis showed increases in enzyme activity required for producing glucose-6-P. Thus, natural xylose-assimilating yeast respond to xylose, in part, by upregulating enzymes required for recycling xylose back to glucose-6-P for the production of NADPH via the oxidative branch of the PPP. Finally, we show that induction of these enzymes correlated with increased tolerance to the NADPH-depleting compound diamide and the fermentation inhibitors furfural and hydroxymethyl furfural; S. cerevisiae was not able to increase enzyme activity for glucose-6-P production when grown in xylose medium and was more sensitive to these inhibitors in xylose medium compared to glucose.  相似文献   

10.
Genes encoding l ‐arabinose transporters in Kluyveromyces marxianus and Pichia guilliermondii were identified by functional complementation of Saccharomyces cerevisiae whose growth on l ‐arabinose was dependent on a functioning l ‐arabinose transporter, or by screening a differential display library, respectively. These transporters also transport d ‐xylose and were designated KmAXT1 (arabinose–xylose transporter) and PgAXT1, respectively. Transport assays using l ‐arabinose showed that KmAxt1p has Km 263 mm and Vmax 57 nm /mg/min, and PgAxt1p has Km 0.13 mm and Vmax 18 nm /mg/min. Glucose, galactose and xylose significantly inhibit l ‐arabinose transport by both transporters. Transport assays using d ‐xylose showed that KmAxt1p has Km 27 mm and Vmax 3.8 nm /mg/min, and PgAxt1p has Km 65 mm and Vmax 8.7 nm /mg/min. Neither transporter is capable of recovering growth on glucose or galactose in a S. cerevisiae strain deleted for hexose and galactose transporters. Transport kinetics of S. cerevisiae Gal2p showed Km 371 mm and Vmax 341 nm /mg/min for l ‐arabinose, and Km 25 mm and Vmax 76 nm /mg/min for galactose. Due to the ability of Gal2p and these two newly characterized transporters to transport both l ‐arabinose and d ‐xylose, one scenario for the complete usage of biomass‐derived pentose sugars would require only the low‐affinity, high‐throughput transporter Gal2p and one additional high‐affinity general pentose transporter, rather than dedicated d ‐xylose or l ‐arabinose transporters. Additionally, alignment of these transporters with other characterized pentose transporters provides potential targets for substrate recognition engineering. Accession Nos: KmAXT1: GZ791039; PgAXT1: GZ791040 Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A Saccharomyces cerevisiae screening strain was designed by combining multiple genetic modifications known to improve xylose utilization with the primary objective of enhancing xylose growth and fermentation in xylose isomerase (XI)-expressing strains. Strain TMB 3045 was obtained by expressing the XI gene from Thermus thermophilus in a strain in which the GRE3 gene coding for aldose reductase was deleted, and the genes encoding xylulokinase (XK) and the enzymes of the non-oxidative pentose phosphate pathway (PPP) [transaldolase (TAL), transketolase (TKL), ribose 5-phosphate ketol-isomerase (RKI) and ribulose 5-phosphate epimerase (RPE)] were overexpressed. A xylose-growing and fermenting strain (TMB 3050) was derived from TMB 3045 by repeated cultivation on xylose medium. Despite its low XI activity, TMB 3050 was capable of aerobic xylose growth and anaerobic ethanol production at 30 degrees C. The aerobic xylose growth rate reached 0.17 l/h when XI was replaced with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes expressed from a multicopy plasmid, demonstrating that the screening system was functional. Xylose growth had not previously been detected in strains in which the PPP genes were not overexpressed or when overexpressing the PPP genes but having XR and XDH genes chromosomally integrated. This demonstrates the necessity to simultaneously increase the conversion of xylose to xylulose and the metabolic steps downstream of xylulose for efficient xylose utilization in S. cerevisiae.  相似文献   

12.
13.
Yeast xylose (aldose) reductases are members of the aldo-keto reductase family of enzymes which are widely distributed in a variety of other organisms. In yeasts, these enzymes catalyse the first step of xylose metabolism where xylose is converted to xylitol. In the past 16 years, xylose reductases from yeasts able to ferment or utilize xylose have been isolated and studied mainly because of their importance in xylose bioconversions. In recent years, genes encoding xylose reductases from several yeasts have been cloned and sequenced. A comparison of the primary sequences of yeast xylose reductases with the much better characterized human aldose reductase and human aldehyde reductase reveals that the yeast enzymes are hybrids between aldo-keto reductases and the short chain dehydrogenases/reductases families of enzymes. Why this is so and its evolutionary significance is presently not known. This short review will critically examine the structure and function information that can be gleaned from the sequence comparison. Several interesting questions arise from the sequence comparison and these can provide fruitful areas for further investigations. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
利用酿酒酵母(Saccharomyces cerevisiae)表面展示系统,将来源于热带假丝酵母(Candida tropicalis)的木糖还原酶基因xyl1嵌入带有His-Tag的酿酒酵母α-凝集素展示载体pICAS-His,构建重组质粒pICAS- His-Ctxyl1,并转化到酿酒酵母宿主菌酿酒酵母MT8—1,通过流式细胞仪快速检测和筛选,得到重组菌株MT8- 1/pICAS-His—Ctxyl1。将重组酵母用于葡萄糖(15g/L)和木糖(5g/L)的混合糖发酵研究,结果表明,重组酿酒酵母MT8/1/pICAS-His—Ctxyl1细胞具有良好的生长和产酶特性,同时能转化木糖生产木糖醇,在培养基中2.5g/ L木糖转化生成2.5g/L木糖醇,转化率达98.7%。  相似文献   

15.
Expression of HXT1, a gene encoding a Saccharomyces cerevisiae low-affinity glucose transporter, is regulated by glucose availability, being activated in the presence of glucose and inhibited when the levels of the sugar are scarce. In this study we show that 14-3-3 proteins are involved in the regulation of the expression of HXT1 by glucose. We also demonstrate that 14-3-3 proteins, in complex with Reg1, a regulatory subunit of Glc7 protein phosphatase, interact physically with Grr1 (a component of the SCF-Grr1 ubiquitination complex), a key player in the process of HXT1 induction by glucose. In addition, we show that the TOR kinase pathway participates actively in the induction of HXT1 expression by glucose. Inhibition of the TOR kinase pathway by rapamycin treatment abolishes HXT1 glucose induction. A possible involvement of PP2A protein phosphatase complex, through the Cdc55 B-subunit, in the glucose induction of HXT1 is also discussed.  相似文献   

16.
The xyl1 gene encoding xylose reductase was cloned from Saccharomyces cerevisiae and expressed in Escherichia coli. The purified enzyme readily carried out xylose reduction in vitro. It prefers NADPH as the co-enzyme by about 80-fold over NADH. Compared to the native enzyme purified from S. cerevisiae (Kuhn et al., 1995), the recombinant xylose reductase displayed slightly higher (about two-fold) affinities (K(m)) for the substrate (xylose) and co-factor (NADPH), as well as a 3.9-fold faster turnover number (K(cat)) and 7.4-fold greater catalytic efficiency (K(cat)/K(m)). The reason for the apparent discrepancies in kinetic constants between the recombinant and native S. cerevisiae xylose reductases is not known. Replacement of Tyr49 by Phe in the recombinant enzyme led to greater than 98% loss of activity, suggesting that this residue plays a critical role in catalysis. Intrinsic enzyme fluorescence spectroscopic analysis showed that the wild-type and the Y49F variant both bound the co-enzyme NADPH with similar affinity. This supports the view that Tyr49 is involved in interaction with the substrate and not the co-factor during catalysis.  相似文献   

17.
Chemical mutation of Saccharomyces cerevisiae using ethyl methane sulfonate was performed to enhance its ability of xylose uptake for ethanol production from lignocellulose under microaerobic condition. Among the appeared mutants, the mutant no. 2 (M2) strain screened using inhibitory effects of 2-deoxyglucose (DOG) showed more than 4-fold high ability in xylose uptake compared with the wild type strain, under the presence of glucose. The catabolite repression by glucose was sufficiently reduced in M2 strain due to its tolerance to the high concentration of DOG (0.5%, wt./vol.). Metabolomic analyses of various sugars in the cell revealed that some of xylose was reduced to xylitol in M2 cell, providing the concentration gradient of xylose and more uptake of xylose. Xylulose-5-phosphate was significantly detected in the crude cell extract from M2 strain, indicating higher metabolic activity in pentose phosphate pathway. This was also confirmed by in vitro analyses of key enzymes involved in glucose and xylose metabolism, such as hexokinase, glucose-6-phosphate dehydrogenase and xylose reductase. Glucose uptake was moderately suppressed in the presence of trehalose-6-phosphate inhibiting the activation of hexokinase, resulting in more uptake of xylose through hexose transport system. To our knowledge, this study is the first report verifying that the mutation technique successfully enhances the xylose uptake by S. cerevisiae, particularly under the presence of glucose.  相似文献   

18.
Saccharomyces cerevisiae mutants, in which open reading frames (ORFs) displaying similarity to the aldo-keto reductase GRE3 gene have been deleted, were investigated regarding their ability to utilize xylose and arabinose. Reduced xylitol formation from D-xylose in gre3 mutants of S. cerevisiae suggests that Gre3p is the major D-xylose-reducing enzyme in S. cerevisiae. Cell extracts from the gre3 deletion mutant showed no detectable xylose reductase activity. Decreased arabitol formation from L-arabinose indicates that Gre3p, Ypr1p and the protein encoded by YJR096w are the major arabinose reducers in S. cerevisiae. The ypr1 deletion mutant showed the lowest specific L-arabinose reductase activity in cell extracts, 3.5 mU/mg protein compared with 7.4 mU/mg protein for the parental strain with no deletions, and the lowest rate of arabitol formation in vivo. In another set of S. cerevisiae strains, the same ORFs were overexpressed. Increased xylose and arabinose reductase activity was observed in cell extracts for S. cerevisiae overexpressing the GRE3, YPR1 and YJR096w genes. These results, in combination with those obtained with the deletion mutants, suggest that Gre3p, Ypr1p and the protein encoded by YJR096w are capable of xylose and arabinose reduction in S. cerevisiae. Both the D-xylose reductase and the L-arabinose reductase activities exclusively used NADPH as co-factor.  相似文献   

19.
为提高米根霉利用葡萄糖、木糖共发酵产L-乳酸的产量,在单因素试验基础上,采用响应面法进行培养基和培养条件优化的试验方案设计。利用Design Expert软件对其结果进行二次回归分析,获得的最佳产酸条件为:葡萄糖100g/L、木糖50g/L、 (NH4)2SO4 3.0g/L、KH2PO4 0.3g/L、摇床转速180r/min、温度32℃、接种量12%、装液量50mL。该条件下摇瓶发酵72h,L-乳酸产量为119.216g/L,转化率为79.48%。  相似文献   

20.
为改善重组酵母发酵木糖生产乙醇的能力,将定点突变改造后的Thermus thermophilus木糖异构酶基因sXYLA克隆到酵母表达载体pYX212并用于转化酸酒酵母Saccharomyces cerevisiae YPH499进行表达研究。酶活检测表明,改造后的木糖异构酶活性是未改造的1.91倍。在此基础上将改造后具有良好特性的木糖异构酶基因sXYLA和来自酸酒酵母的木酮糖激酶基因XKS1耦联,构楚得到重组表达质粒pYX-sXYLA- XKS1,在酿酒酵母YPH499中实现组成型共表达。结果表明,在84 h时重组菌发酵液酶活达到最高,木糖异构酶为0.624 U/mg蛋白,木酮糖激酶为0.688 U/mg蛋白。以葡萄糖和木糖为混合碳源初步进行半通氧发酵,代谢产物分析表明酸酒酵母重组菌木糖的消耗为4.75 g/L,乙醇的产量为0.839 g/L,分别比出发菌提高20.9%和14.8%,为酿酒酵母利用木糖发酵乙醇奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号