首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reliable server pooling (RSP) allows a pool of redundant information sources to be viewed as a single transport endpoint and, therefore, it is able to provide persistent connections and balanced traffic for different applications. The Internet Engineering Task Force RSerPool Working Group has proposed an architecture to implement the RSP; it defines an overlay network providing an upper layer protocol or an application with a range of reliability services, from simple server selection to a fully automatic session-failover capability. The simulation experiments conducted in both wired and wireless environments show that the current version of the RSerPool works well in fixed and relatively reliable environments, but its performance worsens rapidly as the networks become more unreliable or mobile. The issues we have identified in wireless mobile ad hoc networks include network partition, high signaling overhead, difficulty in synchronization among name servers, and excessive aggressiveness in handling failures. Alternative design options for the RSP in wireless and mobile environments are introduced and evaluated.  相似文献   

2.
Adaptive and self-organizing wireless networks are gaining in popularity. Several media access and routing protocols were proposed for such networks and the performance of such protocols were evaluated based on simulations. In this paper, we evaluate the practicality of realizing an ad hoc wireless network and investigate on performance issues. Several mobile computers were enhanced with ad hoc routing capability and were deployed in an outdoor environment and communication performance associated with ad hoc communications were evaluated. These computers periodically send beacons to their neighbors to declare their presence. We examined the impact of varying packet size, beaconing interval, and route hop count on route discovery time, communication throughput, end-to-end delay, and packet loss. We had also performed mobility experiments and evaluated the route reconstruction time incurred. File transfer times associated with sending information reliably (via TCP) over multihop wireless links are also presented. The experimental results obtained revealed that it is feasible to augment existing wireless computers with ad hoc networking capability. End-to-end performance in ad hoc routes are less affected by beaconing intervals than packet size or route length. Similarly, communication throughput is more dependent on packet size and route length with the exception at very high beaconing frequencies. Packet loss, on the other hand, is not significantly affected by packet size, route length or beaconing frequency. Finally, route discovery time in ad hoc wireless networks are more dependent on channel conditions and route length than variations in beaconing intervals  相似文献   

3.
Support for host mobility an essential and necessary feature for roaming users who connect to wireless networks via access points. Access points may have different capabilities, be connected to different networks and be installed by different providers. A mobile host will discover multiple access points in this environment. In such an environment, a mobile host should be able to use the best available connection to communicate with a correspondent host and perhaps use multiple connections for different hosts. In areas with wireless local area network access, pockets with limited or no coverage could exist. Such restricted connectivity could be compensated by neighbor hosts who form an ad hoc network and relay packets until they reach an access point. This paper describes and discusses a proposed solution towards enabling and supporting connectivity in wireless networks. In the proposed solution the network layer software will evaluate and decide which wireless network connections to use. A Running Variance Metric (RVM) and a Relative Network Load(RNL) are used to measure the traffic load of access points in wireless access networks. RVM and RNL can be efficiently used for both infrastructure networks and ad hoc networks. Multihomed Mobile IP (M-MIP) is an extension of Mobile IP that enables mobile hosts to use multiple care-of addresses simultaneously. The extension enhances network connectivity by enabling the mobile host, the home agent and correspondent hosts to evaluate and select the best connection. A proposed gateway architecture using M-MIP that integrates wired IP networks with ad hoc networks is described. The M-MIP and gateway architecture using the RVM and RNL metrics have been validated with simulation studies and results are presented.  相似文献   

4.
Hotspots represent transient but highly congested regions in wireless ad hoc networks that result in increased packet loss, end-to-end delay, and out-of-order packets delivery. We present a simple, effective, and scalable hotspot mitigation protocol (HMP) where mobile nodes independently monitor local buffer occupancy, packet loss, and MAC contention and delay conditions, and take local actions in response to the emergence of hotspots, such as, suppressing new route requests and rate controlling TCP flows. We use analysis, simulation, and experimental results from a wireless testbed to demonstrate the effectiveness of HMP in mobile ad hoc networks. HMP balances resource consumption among neighboring nodes, and improves end-to-end throughput, delay, and packet loss. Our results indicate that HMP can also improve the network connectivity preventing premature network partitions. We present analysis of hotspots, and the detailed design of HMP. We evaluate the protocol’s ability to effectively mitigate hotspots in mobile ad hoc networks that are based on on-demand and proactive routing protocols.  相似文献   

5.
Mobility increases the capacity of ad hoc wireless networks   总被引:16,自引:0,他引:16  
The capacity of ad hoc wireless networks is constrained by the mutual interference of concurrent transmissions between nodes. We study a model of an ad hoc network where n nodes communicate in random source-destination pairs. These nodes are assumed to be mobile. We examine the per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery. Under this assumption, the per-user throughput can increase dramatically when nodes are mobile rather than fixed. This improvement can be achieved by exploiting a form of multiuser diversity via packet relaying.  相似文献   

6.
Predicting the performance of ad hoc networking protocols for mesh networks has typically been performed by making use of software based simulation tools. Experimental study and validation of such predictions is a vital to obtaining more realistic results, but may not be possible under the constrained environment of network simulators. This paper presents an experimental comparison of OLSR using the standard hysteresis routing metric and the ETX metric in a 7 by 7 grid of closely spaced Wi-Fi nodes to obtain more realistic results. The wireless grid is first modelled to extract its ability to emulate a real world multi-hop ad hoc network. This is followed by a detailed analysis of OLSR in terms of hop count, routing traffic overhead, throughput, delay, packet loss and route flapping in the wireless grid using the hysteresis and ETX routing metric. It was discovered that the ETX metric which has been extensively used in mesh networks around the world is fundamentally flawed when estimating optimal routes in real mesh networks and that the less sophisticated hysteresis metric shows better performance in large dense mesh networks.  相似文献   

7.
In third-generation (3G) wireless data networks, providing service to low data-rate users is required for maintaining fairness, but at the cost of reducing the cell's aggregate throughput. In this paper, we propose the unified cellular and ad hoc network (UCAN) architecture for enhancing cell throughput while maintaining fairness. In UCAN, a mobile client has both 3G interface and IEEE 802.11 -based peer-to-peer links. The 3G base station forwards packets for destination clients with poor channel quality to proxy clients with better channel quality. The proxy clients then use an ad hoc network composed of other mobile clients and IEEE 802.11 wireless links to forward the packets to the appropriate destinations, thereby improving cell throughput. We refine the 3G base station scheduling algorithm so that the throughput gains are distributed in proportion to users' average channel rates, thereby maintaining fairness. With the UCAN architecture in place, we propose novel greedy and on-demand protocols for proxy discovery and ad hoc routing that explicitly leverage the existence of the 3G infrastructure to reduce complexity and improve reliability. We further propose secure crediting mechanisms to motivate users that are not actively receiving to participate in relaying packets for others. Through both analysis and extensive simulations with HDR and IEEE 802.11b, we show that the UCAN architecture can increase individual user's throughput by more than 100 percent and the aggregate throughput of the HDR downlink by up to 50 percent.  相似文献   

8.
Power consumption is an important issue in the wireless ad hoc networking environment. In this paper, we present several energy-efficient routing algorithms using directional antennas for wireless ad hoc networks. These algorithms are simple to implement and are distributed and can be applied to mobile environments. We evaluate how directional antennas improve system throughput. We study the influence of the battery recovery effect and mobility on the network throughput during a network lifetime. We also present an algorithm that exploits the broadcast nature of the wireless communication environment to improve end-to-end bit error performance for a Rayleigh fading channel.  相似文献   

9.
TCP with delayed ack for wireless networks   总被引:1,自引:0,他引:1  
Jiwei  Mario  Yeng Zhong  M.Y.   《Ad hoc Networks》2008,6(7):1098-1116
This paper studies the TCP performance with delayed ack in wireless networks (including ad hoc and WLANs) which use IEEE 802.11 MAC protocol as the underlying medium access control. Our analysis and simulations show that TCP throughput does not always benefit from an unrestricted delay policy. In fact, for a given topology and flow pattern, there exists an optimal delay window size at the receiver that produces best TCP throughput. If the window is set too small, the receiver generates too many acks and causes channel contention; on the other hand, if the window is set too high, the bursty transmission at the sender triggered by large cumulative acks will induce interference and packet losses, thus degrading the throughout. In wireless networks, packet losses are also related to the length of TCP path; when traveling through a longer path, a packet is more likely to suffer interference. Therefore, path length is an important factor to consider when choosing appropriate delay window sizes. In this paper, we first propose an adaptive delayed ack mechanism which is suitable for ad hoc networks, then we propose a more general adaptive delayed ack scheme for ad hoc and hybrid networks. The simulation results show that our schemes can effectively improve TCP throughput by up to 25% in static networks, and provide more significant gain in mobile networks. The proposed schemes are simple and easy to deploy. The real testbed experiments are also presented to verify our approaches. Furthermore, a simple and effective receiver-side probe and detection is proposed to improve friendliness between the standard TCP and our proposed TCP with adaptive delayed ack.  相似文献   

10.
Flows transported across mobile ad hoc wireless networks suffer from route breakups caused by nodal mobility. In a network that aims to support critical interactive real-time data transactions, to provide for the uninterrupted execution of a transaction, or for the rapid transport of a high value file, it is essential to identify robust routes across which such transactions are transported. Noting that route failures can induce long re-routing delays that may be highly interruptive for many applications and message/stream transactions, it is beneficial to configure the routing scheme to send a flow across a route whose lifetime is longer, with sufficiently high probability, than the estimated duration of the activity that it is selected to carry. We evaluate the ability of a mobile ad hoc wireless network to distribute flows across robust routes by introducing the robust throughput measure as a performance metric. The utility gained by the delivery of flow messages is based on the level of interruption experienced by the underlying transaction. As a special case, for certain applications only transactions that are completed without being prematurely interrupted may convey data to their intended users that is of acceptable utility. We describe the mathematical calculation of a network’s robust throughput measure, as well as its robust throughput capacity. We introduce the robust flow admission and routing algorithm (RFAR) to provide for the timely and robust transport of flow transactions across mobile ad hoc wireless network systems.  相似文献   

11.
Lee  S.-J. Gerla  M. Toh  C.-K. 《IEEE network》1999,13(4):48-54
Bandwidth and power constraints are the main concerns in current wireless networks because multihop ad hoc mobile wireless networks rely on each node in the network to act as a router and packet forwarder. This dependency places bandwidth, power, and computation demands on mobile hosts which must be taken into account when choosing the best routing protocol. In previous years, protocols that build routes based on demand have been proposed. The major goal of on-demand routing protocols is to minimize control traffic overhead. We perform a simulation and performance study on some routing protocols for ad hoc networks. The distributed Bellman-Ford (1957, 1962), a traditional table-driven routing algorithm, is simulated to evaluate its performance in multihop wireless network. In addition, two on-demand routing protocols (dynamic source routing and associativity-based routing) with distinctive route selection algorithms are simulated in a common environment to quantitatively measure and contrast their performance. The final selection of an appropriate protocol will depend on a variety of factors, which are discussed in this article  相似文献   

12.
Wireless ad hoc networks will be an important component in future communication systems. The performance of wireless ad hoc networks can be improved by link quality-aware applications. Wireless link quality is dynamic in nature, especially in mobile scenarios. Therefore, accurate and fast packet delivery ratio estimation is a prerequisite to good performance in mobile, multi-hop and multi-rate wireless ad hoc networks. In this paper, we propose a novel packet delivery ratio estimation method that improves the accuracy and responsiveness of the packet delivery ratio estimation. The proposed link quality estimation components are implemented in a IEEE 802.11b/g test-bed. The experiment results show that the accuracy of the packet delivery ratio estimation can improve up to 50% in mobile scenarios without introducing overhead. We also show the end-to-end performance impact of this improved estimation on route selection using different routing metrics and configurations. The measurement results show that our packet delivery ratio method leads to better route selection in the form of increased end-to-end throughput compared to traditional methods, which respond slowly to the link dynamics.  相似文献   

13.
Today's HTTP carries Web interactions over client-initiated TCP connections. An important implication of using this transport method is that interception caches in the network violate the end-to-end principle of the Internet, which severely limits deployment options of these caches. Furthermore, while an increasing number of Web interactions are short, and in fact frequently carry only control information and no data, TCP is often inefficient for short interactions We propose a new transfer protocol for the Web, called Dual-Transport HTTP (DHTTP), which splits the traffic between UDP and TCP channels. When choosing the TCP channel, it is the server who opens the connection back to the client. Through server-initiated connections, DHTTP upholds the Internet end-to-end principle in the presence of interception caches, thereby allowing unrestricted caching within backbones. Moreover, the comparative performance study of DHTTP and HTTP using trace-driven simulation as well as testing real HTTP and DHTTP servers showed a significant performance advantage of DHTTP when the bottleneck is at the server and comparable performance when the bottleneck is in the network.  相似文献   

14.
移动自组织网络是一组由移动节点组成的无线网络。它的性能已经被广泛的进行了研究,但是这些研究主要是针对节点的移动性和网络的规模来展开的。近年来,移动自组织网在传输视频、音频、数据、图像等多媒体上的应用越来越多,因此自组织网在传输不同业务模型时的性能分析也引起了人们的广泛关注。本文中,我们主要研究分析了移动自组织网DSR协议在传输VBR业务时的性能,并且将仿真结果和传输CBR业务时的结果进行了比较。通过进一步的分析,我们得出与传输VBR业务相比,在传输CBR业务时,移动自组织网DSR协议性能明显提高。  相似文献   

15.
SQL注入攻击是Web应用面临的主要威胁之一,传统的检测方法针对客户端或服务器端进行。通过对SQL注入的一般过程及其流量特征分析,发现其在请求长度、连接数以及特征串等方面,与正常流量相比有较大区别,并据此提出了基于长度、连接频率和特征串的LFF(length-frequency-feature)检测方法,首次从网络流量分析的角度检测SQL注入行为。实验结果表明,在模拟环境下,LFF检测方法召回率在95%以上,在真实环境下,该方法也取得较好的检测效果。  相似文献   

16.
Takahiro  Takashi   《Ad hoc Networks》2005,3(5):607
This paper describes an ad hoc networking scheme and routing protocol for emergency communications. The objective of the network is to collect damage assessment information quickly and stably in a disaster. The network is configured with a hybrid wireless network, combining ad hoc networks and a cellular network to maintain connectivity between a base station (BS) and nodes even in a disaster. In the event that a direct link between the BS and a node is disconnected due to damage or obstacles, the node switches to the ad hoc mode, and accesses the BS via neighboring nodes by multihopping. The routing protocol proposed in this paper discovers and builds a route by way of monitoring neighbors’ communications instead of broadcasting a route request packet. The network employs a dedicated medium access control protocol based on TDM (Time Division Multiplexing) for multihopping in ad hoc networks to maintain accessibility and to perform a short delay. Experiments showed that approximately 90% of nodes are capable of reaching the BS within a few hops, even in conditions where only 20% of nodes maintain direct connections to the BS. In addition, the results showed that it is feasible for the network to operate in a short delay for delivering a packet to the BS. However, throughput is not retrieved sufficiently due to the restriction of the access protocol, whereas reachability does improve sufficiently. Therefore, the network is suitable for collecting damage assessment information and transmitting urgent traffic quickly and stably, while the data is restricted to a small amount.  相似文献   

17.
Existing multi-channel Medium Access Control (MAC) protocols have been demonstrated to significantly increase wireless network performance compared to single channel MAC protocols. Traditionally, the channelization structure in IEEE 802.11 based wireless networks is pre-configured, and the entire available spectrum is divided into subchannels and equal channel widths. In contrast, this paper presents a Traffic-Aware Channelization MAC (TAC-MAC) protocol for wireless ad hoc networks, where each node is equipped with a single half duplex transceiver. TAC-MAC works in a distributed, fine-grai-ned manner, which dynamically divides variable-width subchannels and allocates subchannel width based on the Orthogonal Frequency Division Multiplexing (OFDM) technique according to the traffic demands of nodes. Simulations show that the TAC-MAC can significantly improve network throughput and reduce packet delay compared with both fixed-width multi-channel MAC and single channel 802.11 protocols, which illustrates a new paradigm for high-efficient multi-channel MAC design in wireless ad hoc networks.  相似文献   

18.
In delay-tolerant mobile ad hoc networks, motion of network nodes, network sparsity and sporadic density can cause a lack of guaranteed connectivity. These networks experience significant link delay and their routing protocols must take a store-and-forward approach. In this paper, an opportunistic routing protocol is proposed, along with its compatible media access control, for non-real-time services in delay-tolerant networks. The scheme is mobility-aware such that each network node needs to know its own position and velocity. The media access control employs a four-fold handshake procedure to probe the wireless channel and cooperatively prioritize candidate nodes for packet replication. It exploits the broadcast characteristic of the wireless medium to utilize long-range but unreliable links. The routing process seizes opportunities of node contacts for data delivery. It takes a multiple-copy approach that is adaptive with node movements. Numerical results in mobile ad hoc networks and vehicular ad hoc networks show superior performance of the proposed protocol compared with other routing protocols. The mobility-aware media access control and routing scheme exhibits relatively small packet delivery delay and requires a modest amount of total packet replications/transmissions.  相似文献   

19.
In this paper we analyze the average end-to-end delay and maximum achievable per-node throughput in random access multihop wireless ad hoc networks with stationary nodes. We present an analytical model that takes into account the number of nodes, the random packet arrival process, the extent of locality of traffic, and the back off and collision avoidance mechanisms of random access MAC. We model random access multihop wireless networks as open G/G/1 queuing networks and use the diffusion approximation in order to evaluate closed form expressions for the average end-to-end delay. The mean service time of nodes is evaluated and used to obtain the maximum achievable per-node throughput. The analytical results obtained here from the queuing network analysis are discussed with regard to similarities and differences from the well established information-theoretic results on throughput and delay scaling laws in ad hoc networks. We also investigate the extent of deviation of delay and throughput in a real world network from the analytical results presented in this paper. We conduct extensive simulations in order to verify the analytical results and also compare them against NS-2 simulations.  相似文献   

20.
One of the main characteristics of wireless ad hoc networks is their node-centric broadcast nature of communication, leading to interferences and spatial contention between adjacent wireless links. Due to such interferences, pessimistic concerns have been recently raised with respect to the decreasing network capacity in wireless ad hoc networks when the number of nodes scales to several orders of magnitude higher. Such studies assume uniformly distributed nodes in the network and randomized traffic patterns. In this paper, we argue that in all cases of end-to-end data communications-including one-to-k unicast and multicast data dissemination as well as k-to-one data aggregation-the maximum achievable end-to-end data throughput (measured on the sources) heavily depends on the strategy of arranging the topology of transmission between sources and destinations, as well as possible per-node operations such as coding. An optimal strategy achieves better end-to-end throughput than an arbitrary one. We present theoretical studies and critical insights with respect to how these strategies may be designed so that end-to-end throughput may be increased. After all, under all circumstances-in either a lightly loaded or a congested network-increasing end-to-end throughput from its baseline is always beneficial to applications using ad hoc networks to communicate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号