首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid wireless network is an extension of an infrastructure network, where a mobile host may connect to an access point (AP) using multihop wireless routes, via other mobile hosts. The APs are configured to operate on one of multiple available channels. Mobile hosts and wireless routers can select its operating channel dynamically through channel switching. In this environment, a routing protocol that finds routes to balance load among channels while maintaining connectivity was proposed. The protocol works with nodes equipped with a single network interface, which distinguishes the work with other multichannel routing protocols that require multiple interfaces per node. The protocol discovers multiple routes to multiple APs, possibly operating on different channels. Based on a traffic load information, each node selects the "best" route to an AP and synchronizes its channel with the AP. With this behavior, the channel load is balanced, removing hot spots and improving channel utilization. The protocol assures every node has at least one route to an AP, where all intermediate nodes are operating on the same channel. The simulation results show that the proposed protocol successfully adapts to changing traffic conditions and improves performance over a single-channel protocol and a multichannel protocol with no load balancing.  相似文献   

2.
Mobile multimedia applications have recently generated much interest in mobile ad hoc networks (MANETs) supporting quality-of-service (QoS) communications. Multiple non-interfering channels are available in 802.11 and 802.15 based wireless networks. Capacity of such channels can be combined to achieve higher QoS performance than for single channel networks. The capacity of MANETs can be substantially increased by equipping each network node with multiple interfaces that can operate on multiple non-overlapping channels. However, new scheduling, channel assignment, and routing protocols are required to utilize the increased bandwidth in multichannel MANETs. In this paper, we propose an on-demand routing protocol M-QoS-AODV in multichannel MANETs that incorporates a distributed channel assignment scheme and routing discovery process to support multimedia communication and to satisfy QoS bandwidth requirement. The proposed channel assignment scheme can efficiently express the channel usage and interference information within a certain range, which reduces interference and enhances channel reuse rate. This cross-layer design approach can significantly improve the performance of multichannel MANETs over existing routing algorithms. Simulation results show that the proposed M-QoS-AODV protocol can effectively increase throughput and reduce delay, as compared to AODV and M-AODV-R protocols.  相似文献   

3.
In this paper, we study the multichannel exposed terminal problem in multihop wireless networks. We propose a multichannel medium access control (MAC) protocol, called multichannel MAC protocol with hopping reservation (MMAC‐HR), to resolve the multichannel exposed terminal problem. MMAC‐HR uses two radio interfaces; one interface is fixed over the control channel, and the other interface switches dynamically between data channels. The fixed interface supports broadcast information and reserves a data channel for any data transmission. The switchable interface, on other hand, is for data exchanges and follows independent slow hopping without requiring clock synchronization. In addition, the proposed protocol is a distributed one. By using the ns‐2 simulator, extensive simulations are performed to demonstrate that MMAC‐HR can enhance the network throughput and delay compared with existing multichannel MAC protocol. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Today’s IEEE 802.11 devices support multiple channels and data rates. Utilizing multiple channels and data rates can increase the performance of IEEE 802.11 networks. However, the multi-channel design to exploit available channels is one of the challenging issues. Moreover, performance anomaly occurs in IEEE 802.11 multi-rate networks when high-rate and low-rate links share a common channel, which degrades the overall network capacity significantly. In this paper, we introduce an extension of conflict graph, called rate conflict graph (RCG), to understand the performance anomaly problem in IEEE 802.11 multi-rate networks. Then, we propose a group-based channel assignment (GCA) protocol for IEEE 802.11-based multi-radio multi-rate single-hop ad hoc networks. In GCA, each node is equipped with multiple IEEE 802.11 interfaces, and links are subdivided into multiple groups, called component groups, by obeying the interface constraints. Then, GCA utilizes RCG and a heuristic algorithm to separate different data rate links via multiple channels so that the performance anomaly problem is addressed. Our extensive simulation results reveal that GCA achieves improved performance over existing channel assignment protocols designed to consider performance anomaly.  相似文献   

5.
Multichannel mesh networks: challenges and protocols   总被引:2,自引:0,他引:2  
Supporting high throughput is an important challenge in multihop mesh networks. Popular wireless LAN standards, such as IEEE 802.11, provision for multiple channels. In this article, we consider the use of multiple wireless channels to improve network throughput. Commercially available wireless network interfaces can typically operate over only one channel at a time. Due to cost and complexity constraints, the total number of interfaces at each host is expected to be smaller than the total channels available in the network. Under this scenario, several challenges need to be addressed before all the available channels can be fully utilized. In this article, we highlight the main challenges, and present two link-layer protocols for utilizing multiple channels. We also present a new abstraction layer that simplifies the implementation of new multichannel protocols in existing operating systems. This article demonstrates the feasibility of utilizing multiple channels, even if each host has fewer interfaces than the number of available channels.  相似文献   

6.
Wireless mesh networks (WMN) typically employ mesh routers that are equipped with multiple radio interfaces to improve network capacity. The key aspect is to cleverly assign different channels (i.e., frequency bands) to each radio interface to form a WMN with minimum interference. The channel assignment must obey the constraints that the number of different channels assigned to a mesh router is at most the number of interfaces on the router, and the resultant mesh network is connected. This problem is known to be NP-hard. In this paper we propose a hybrid, interference and traffic aware channel assignment (ITACA) scheme that achieves good multi-hop path performance between every node and the designated gateway nodes in a multi-radio WMN network. ITACA addresses the scalability issue by routing traffic over low-interference, high-capacity links and by assigning operating channels in such a way to reduce both intra-flow and inter-flow interference. The proposed solution has been evaluated by means of both simulations and by implementing it over a real-world WMN testbed. Results demonstrate the validity of the proposed approach with performance increase as high as 111%.  相似文献   

7.
Packet radio networks that employ several parallel multiple-access channels are considered. An architecture for such a network dictates the selection of channels for packet transmission. We propose and analyze two multichannel architectures. In the first, each node employs a single radio and is assigned a channel on which it listens when it does not transmit. To transmit a packet, the node tunes its radio to the channel of the intended receiver for that transmission only. The second architecture requires each radio to use a single channel for both transmission and reception, but provides some of the nodes with more than one radio each, allowing them to serve as bridges between channels. Within these architectures, one can further select the amount of routing information held by each node and the channel-access protocol, both of which greatly affect the network performance. To ascertain the effects of the various parameters, we calculate the throughput in both architectures. The channel-access protocols we consider are slotted ALOHA and CSMA with and without capture. We also evaluate the effect of increasing the amount of routing information held by the nodes.  相似文献   

8.
In this paper, we consider multi-hop wireless mesh networks, where each router node is equipped with multiple radio interfaces and multiple channels are available for communication. We address the problem of assigning channels to communication links in the network with the objective of minimizing overall network interference. Since the number of radios on any node can be less than the number of available channels, the channel assignment must obey the constraint that the number of different channels assigned to the links incident on any node is atmost the number of radio interfaces on that node. The above optimization problem is known to be NP-hard. We design centralized and distributed algorithms for the above channel assignment problem. To evaluate the quality of the solutions obtained by our algorithms, we develop a semidefinite program and a linear program formulation of our optimization problem to obtain lower bounds on overall network interference. Empirical evaluations on randomly generated network graphs show that our algorithms perform close to the above established lower bounds, with the difference diminishing rapidly with increase in number of radios. Also, ns-2 simulations as well as experimental studies on testbed demonstrate the performance potential of our channel assignment algorithms in 802.11-based multi-radio mesh networks.  相似文献   

9.
The paper investigates multichannel switching as a promising alternative to traditional single-channel switching where virtual paths established in a switch are between a single input channel and a single output channel. A particular non-blocking condition is derived for flip networks, which is exploited to realize a multichannel switching architecture that supports an arbitrary number of channel groups. The architecture is internally nonblocking and bufferless. Using one flip network recursively a number of times based on the number of channel groups, the resulting architecture becomes efficient in the sense that the cross point complexity is O(N log2 N) for N inputs. Other distinguishing features are the abilities to provide multicasting, superrate switching (i.e., rates that exceed the capacity of a single channel are accommodated), multirate switching (i.e., bit pipes of different rates are supported simultaneously), multiple performance requirements (i.e., services with different performance requirements are treated accordingly), and fair access to all inputs (i.e., no input is systematically discriminated against). In multichannel switching, cells belonging to a single session can traverse multiple channels. Providing the cell sequencing integrity becomes a challenging issue. The architecture proposed in the paper accomplishes the task without employing any cell resequencing mechanism  相似文献   

10.
A separation theorem for single-source network coding   总被引:1,自引:0,他引:1  
In this paper, we consider a point-to-point communication network of discrete memoryless channels. In the network, there are a source node and possibly more than one sink node. Information is generated at the source node and is multicast to each sink node. We allow a node to encode its received information before loading it onto an outgoing channel, where the channels are independent of each other. We also allow the nodes to pass along messages asynchronously. In this paper, we characterize the admissibility of single-source multi-sink communication networks. Our result can be regarded as a network generalization of Shannon's result that feedback does not increase the capacity of a discrete memoryless channels (DMCs), and it implies a separation theorem for network coding and channel coding in such a communication network.  相似文献   

11.
Multicast Capacity of Wireless Ad Hoc Networks   总被引:2,自引:0,他引:2  
Assume that n wireless nodes are uniformly randomly deployed in a square region with side-length a and all nodes have the uniform transmission range r and uniform interference range R > r. We further assume that each wireless node can transmit (or receive) at W bits/second over a common wireless channel. For each node vi , we randomly and independently pick k-1 points pi,j (1 les j les k-1) from the square, and then multicast data to the nearest node for each pi,j. We derive matching asymptotic upper bounds and lower bounds on multicast capacity of random wireless networks. Under protocol interference model, when a 2/r 2=O(n/log(n)), we show that the total multicast capacity is Theta(radic{n/log n}middot(W/radick)) when k=O(n/log n); the total multicast capacity is Theta(W) when k=Omega(n/log n). We also study the capacity of group-multicast for wireless networks where for each source node, we randomly select k-1 groups of nodes as receivers and the nodes in each group are within a constant hops from the group leader. The same asymptotic upper bounds and lower bounds still hold. We also extend our capacity bounds to d -dimensional networks.  相似文献   

12.
In this paper, we consider the problem of scheduling lightpaths and computing resources for sliding grid demands in WDM networks. Each sliding grid demand is represented by a tuple (v,R,c,p,q,l) , where v is the client node, R is the resource-group which includes a group of predefined resource nodes, c is the required amount of computing resources, [p,q] is the time window and l is the demand duration. With each demand, the scheduling algorithm is required to decide the start time t (p les t les q - l), reserve an amount of c computing resources at a resource node v ' isin R and provision a primary lightpath as well as a backup lightpath from v ' to v . The reserved computing resources and lightpaths are used during [t,t + l]. Unlike the sequential approach wherein the start time, the network resources (lightpaths) and the computing resources are considered one after another, in our work we use the joint scheduling approach wherein the resources and the start time are examined jointly. We consider sliding demands with static and dynamic arrival patterns. We develop an integer linear programming (ILP) formulation to obtain optimal results. For the reason of scalability, we propose heuristic algorithms based on joint resource scheduling and study their effectiveness through simulation experiments.  相似文献   

13.
We review recent progress and the future of 40-Gbit/s electrical time division multiplexed (ETDM) channel technologies for the optical transport network (OTN), where optical technologies, including high-speed ETDM channel transmission and wavelength division multiplexing (WDM), dramatically enhance network flexibility while reducing transport node cost as well as transmission cost. The 40 Gbit/s channel has recently been specified to be one of the optical channels in OTN. A new digital frame for the optical channels [optical channel transport unit (OTU)] was introduced for the network node interface of OTN in International Telecommunication Union-Telecommunication (ITU-T) standard. The specified data bit rates are 2.7 Gbit/s (OTU1), 10.7 Gbit/s (OTU2), and 43.0 Gbit/s (OTU3). These OTU frames have additional overhead bytes that support the network management overhead for OTN and out-of-band forward error correcting (FEC) codes. We discuss the feasibility and impact of the OTU3 frame in terrestrial networks. A newly developed 43-Gbit/s OTN line terminal prototype that confirms the feasibility of 43-Gbit/s ETDM channels and the OTU3 management capability is discussed. As a guide to the evolution of OTN, modulation formats for 43Gbit/s-based DWDM transmission are described for long distance application with the total capacity over one terabit per second.  相似文献   

14.
In this paper, we first identify several challenges in designing a joint channel assignment and routing (JCAR) protocol in heterogeneous multiradio multichannel multihop wireless networks (M3WNs) using commercial hardware [e.g., IEEE 802.11 Network Interface Card (NIC)]. We then propose a novel software solution, called Layer 2.5 JCAR, which resides between the MAC layer and routing layer. JCAR jointly coordinates the channel selection on each wireless interface and the route selection among interfaces based on the traffic information measured and exchanged among the two-hop neighbors. Since interference is one of the major factors that constrain the performance in a M3 WN, in this paper, we introduce an important channel cost metric (CCM) which actually reflects the interference cost and is defined as the sum of expected transmission time weighted by the channel utilization over all interfering channels (for each node). In CCM, both the interference and the diverse channel characteristics are taken into account. An expression for CCM is derived in terms of equivalent fraction of air time by explicitly taking the radio heterogeneity into consideration. Using CCM as one of the key performance measures, we propose a distributed algorithm (heuristic) that produces near-optimal JCAR solution. To evaluate the efficacy of our heuristics, we conduct extensive simulations using the network simulator NS2. To demonstrate implementation feasibility, we conducted various experiments for the proposed distributed JCAR algorithm on a multihop wireless network testbed with nine wireless nodes, each is equipped with single/multiple 802.11a/g cards. Both experimental and simulation results demonstrate the effectiveness and implementation easiness of our proposed software solution  相似文献   

15.
In this paper, we address the problem of joint channel assignment, link scheduling, and routing for throughput optimization in wireless networks with multiradios and multichannels. We mathematically formulate this problem by taking into account the interference, the number of available radios the set of usable channels, and other resource constraints at nodes. We also consider the possible combining of several consecutive channels into one so that a network interface card (NIC) can use the channel with larger range of frequencies and thus improve the channel capacity. Furthermore, we consider several interference models and assume a general yet practical network model in which two nodes may still not communicate directly even if one is within the transmission range of the other. We designed efficient algorithm for throughput (or fairness) optimization by finding flow routing, scheduling of transmissions, and dynamic channel assignment and combining. We show that the performance, fairness and throughput, achieved by our method is within a constant factor of the optimum. Our model also can deal with the situation when each node will charge a certain amount for relaying data to a neighboring node and each flow has a budget constraint. Our extensive evaluation shows that our algorithm can effectively exploit the number of channels and radios. In addition, it shows that combining multiple channels and assigning them to a single user at some time slots indeed increases the maximum throughput of the system compared to assigning a single channel.  相似文献   

16.
Next-generation wireless mobile communications will be driven by converged networks that integrate disparate technologies and services. The wireless mesh network is envisaged to be one of the key components in the converged networks of the future, providing flexible high- bandwidth wireless backhaul over large geographical areas. While single radio mesh nodes operating on a single channel suffer from capacity constraints, equipping mesh routers with multiple radios using multiple nonoverlap- ping channels can significantly alleviate the capacity problem and increase the aggregate bandwidth available to the network. However, the assignment of channels to the radio interfaces poses significant challenges. The goal of channel assignment algorithms in multiradio mesh networks is to minimize interference while improving the aggregate network capacity and maintaining the connectivity of the network. In this article we examine the unique constraints of channel assignment in wireless mesh networks and identify the key factors governing assignment schemes, with particular reference to interference, traffic patterns, and multipath connectivity. After presenting a taxonomy of existing channel assignment algorithms for WMNs, we describe a new channel assignment scheme called MesTiC, which incorporates the mesh traffic pattern together with connectivity issues in order to minimize interference in multi- radio mesh networks.  相似文献   

17.
Previous analytic models for packet switching networks have always assumed infinite storage capacity in store-store-and-forward (S/F) nodes. In this paper, we relax this assumption and present a model for a packet switching network in which each node has a finite pool of S/F buffers. A packet arriving at a node in which all S/F buffers are temporarily filled is discarded. The channel transmission control mechanisms of positive acknowledgment and time-out of packets are included in this model. Individual S/F nodes are analyzed separately as queueing networks with different classes of packets. The single node results are interfaced by imposing a continuity of flow constraint. A heuristic algorithm for determining a balanced assignment of nodal S/F buffer capacities is proposed. Numerical results for the performance of a 19 node network are illustrated.  相似文献   

18.
A broadband ISDN switching network model is presented, switching the channel types H2, H3, and H4 envisaged by the CCITT. The synchronous time division multiplex technique is applied. The switching network operates at the basic bit rate of the H2-channel; H3and H4-connections are established via multichannel connections of up to four basic channels. H2-connections which are part of one H3- or H4-connection always have to use common interconnection links. This is a favorable solution to keep digit sequence integrity for multichannel connections, but influences blocking characteristics of the switching network. The implementation of an optimal path selection method plays a fundamental role. In such a multichannel switching network, blocking probabilities for H2-, H3-, and H4-connections must be distinguished. They do not only depend on the total offered load, but also on the proportions of H2-, H3-, and H4-connections (traffic mix). The simulation results presented in this paper prove that multirate switching via multichannel connections is feasible for the broadband channel types H2, H3, and H4, and that the proposed switching network has a sufficiently high traffic capacity whatever the traffic mix may be.  相似文献   

19.
This paper presents a distributed and localized interference‐aware channel assignment framework for multi‐radio wireless mesh networks in a cognitive network environment. The availability of multiple interfaces and channels in wireless devices is expected to enhance network throughput in wireless mesh networks. A notable design issue in such networks is how to dynamically assign available channels to multiple radio interfaces for maximizing effective network throughput by minimizing interference. The proposed framework uses a novel interference estimation method by utilizing distributed conflict graphs on a per‐interface basis. Presented results obtained via simulation studies in 802.11 based multi‐radio mesh networks indicate that for both homogeneous and heterogeneous primary networks, the proposed protocol can facilitate a large increase in network throughput in comparison with a Common Channel Assignment mechanism that is used as a benchmark in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Throughput limitation of wireless networks imposes many practical problems as a result of wireless media broadcast nature. The solutions of the problem are mainly categorized in two groups; the use of multiple orthogonal channels and network coding (NC). The networks with multiple orthogonal channels and possibly multiple interfaces can mitigate co-channel interference among nodes. However, efficient assignment of channels to the available network interfaces is a major problem for network designers. Existing heuristic and theoretical work unanimously focused on joint design of channel assignment with the conventional transport/IP/MAC architecture. Furthermore, NC has been a prominent approach to improve the throughput of unicast traffic in wireless multi-hop networks through opportunistic NC. In this paper we seek a collaboration scheme for NC in multi-channel/interface wireless networks, i.e., the integration of NC, routing and channel assignment problem. First, we extend the NC for multiple unicast sessions to involve both COPE-type and a new proposed scheme named as Star-NC. Then, we propose an analytical framework that jointly optimizes the problem of routing, channel assignment and NC. Our theoretical formulation via a linear programming provides a method for finding source–destination routes and utilizing the best choices of different NC schemes to maximize the aggregate throughput. Through this LP, we propose a novel channel assignment algorithm that is aware of both coding opportunities and co-channel interference. Finally, we evaluate our model for various networks, traffic models, routing and coding strategies over coding-oblivious routing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号