首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We conducted two clinical studies to examine the effects of diets high in stearic acid and lauric + myristic acid on plasma lipids and lipoproteins of healthy young men. In the first study subjects (n = 15) were fed whole food diets high in cocoa butter, butter, olive oil and soybean oil. In the second study, subjects were fed diets very high in saturated fatty acids (> 20% of calories) that were high in either stearic acid (from cocoa butter or milk chocolate) or lauric + myristic acid (from butter). In the first study, cocoa butter elicited a neutral cholesterolemic effect, whereas the butter diet was hypercholesterolemic and the olive oil and soybean oil diets were hypocholesterolemic. In the second study, the diets high in stearic acid did not raise plasma total and LDL-cholesterol levels, whereas, as in the first study, butter was markedly hypercholesterolemic. Regression analyses performed on the individual data from these two clinical studies were conducted to establish the cholesterolemic effects of individual fatty acids. The bestfitting linear regression equations relating ΔTC (change in plasma total cholesterol) was: ΔTC = 2.3 ΔC14:0 + 3.0 ΔC16:0-0.8 ΔC18:0-1.0 ΔPUFA, where Δ fatty acid = change in intake expressed as percent of calories. This predictive equation separates stearic acid from the other long-chain saturated fatty acids and suggests that it has an independent cholesterol-lowering effect. In conclusion, stearic acid is a unique long-chain saturated fatty acid.  相似文献   

2.
The seed lipids from five sunflower mutants, two with high palmitic acid contents, one of them in high oleic background, and three with high stearic acid contents, have been characterized. All lipid classes of these mutant seeds have increased saturated fatty acid content although triacylglycerols had the highest levels. The increase in saturated fatty acids was mainly at the expense of oleic acid while linoleic acid levels remained unchanged. No difference between mutants and standard sunflower lines used as controls was found in minor fatty acids: linolenic, arachidic, and behenic. In the high-palmitic mutants palmitoleic acid (16∶1n−7) and some palmitolinoleic acid (16∶2n−7, 16∶2n−4) also appeared. Phosphatidylinositol, the lipid with the highest palmitic acid content in controls, also had the highest content of palmitic or stearic acids, depending on the mutant type, suggesting that saturated fatty acids are needed for its physiological function. Positional analysis showed that mutant oils have very low content of saturated fatty acids in the sn-2 position of triacylglycerols, between the content of olive oil and cocoa butter.  相似文献   

3.
We investigated modes whereby stearic acid (18∶0) exerts a neutral or cholesterol-lowering effect using dietary fats which provided graded levels of 18∶0 and distinct triacylglycerol (TAG) profiles. Male Sprague-Dawley rats (150–175 g) were fed diets containing 0.2% cholesterol and 16% fat from corn oil, or from 1% corn oil plus 15% lard (13.2% 18∶0), beef tallow (19.2% 18∶0) or cocoa butter (34.7% 18∶0) for 3 wk, and then killed in a fasted or fed state. Chylomicron (CM) fatty acid profiles suggested reduced absorption of 18∶0 with greater 18∶0 intake. CM TAG profiles indicated a reduction or loss of two TAG species compared to the TAG profiles of the stearate-rich diets: 1-palmitoyl-2-oleoyl-3-stearoyl glycerol (POS) and 1,3-distearoyl-2-oleoyl glycerol (SOS). Hepatic total cholesterol concentrations were 54–77% lower (P<0.01) in the cocoa butter-fed than the lard- and beef tallow-fed groups. The cocoa butter group showed a significantly lower ratio of high-density lipoprotein esterified/free cholesterol than all other groups. Hepatic stearoyl-CoA and oleoyl-CoA concentrations, the substrate and product for hepatic δ9 desaturase, were not significantly different for corn oil-fed and cocoa butter-fed groups in spite of a large difference in 18∶0 intake. These data suggest that the neutral or cholesterol-lowering effect of 18∶0 is not due to hepatic conversion of stearic to oleic acid, and that POS and SOS are poorly absorbed from stearate-rich dietary fats.  相似文献   

4.
Earlier work has shown that increasing concentration of palmitic acid at the sn-2 position of a fat enhances the atherogenic properties of that fat. This effect has been observed with lard, tallow, cottonseed oil, and palm oil. In the experiment reported here, we have studied the atherogenic effects of four synthetic fats fed to rabbits as 58% (w/w) of the total fat (15%) (w/w) of a semipurified diet containing 0.05% cholesterol. The fats being tested were: 1,3-stearoyl-2-oleoylglycerol (SOS); 1,2-stearoyl-3-oleoylglycerol (SSO); 1,3-palmitoyl-2-oleoylglycerol (POP); and 1,2-palmitoyl-3-oleoylglycerol (PPO). After 20 wk on diet there were no differences among the groups in weight gain, liver weight, serum, or liver lipids. These data are consistent with our previous findings. There were significant differences in atherosclerosis. The most severe atherosclerosis was observed in group PPO and the least in groups SSO and POP. Severity of atherosclerosis was graded visually on a 0–4 scale. The average atherosclerosis [(aortic arch and thoracic aorta)÷2] was: SOS-1.35; SSO-0.97; POP-0.83; and PPO-1.80. Fecal fat excretion (an indicator of fat absorption) was higher in the two groups fed the stearic acid-rich fats and lower in groups fed the palmitic acid-rich fats. There were no differences in low density lipoprotein particle size. The results confirm previous findings concerning the increased atherogenicity of fats bearing palmitic acid at the sn-2 position. The mechanism underlying these observations is moot but may, in part, reflect greater absorption of the atherogenic fat.  相似文献   

5.
The major objective of the present study was to prepare structured lipids rich in stearic acid from rice bran oil (RBO) using immobilized lipase (IM 60) from Rhizomucor miehei. The effects of incubation time and temperature, substrate molar ratio, and enzyme load on incorporation of stearic acid were studied. Acidolysis reactions were performed in hexane. Pancreatic lipase‐catalyzed sn‐2 positional analysis and tocopherol analyses were performed before and after enzymatic modification. The kinetics of the reaction was studied and maximum incorporation of stearic acid was observed at 6 h, at 37 °C, when the triacylglycerol and stearic acid molar ratio was maintained at 1 : 6 and the enzyme concentration was 10% of total substrates weight. Stearic acid in RBO after acidolysis was increased from 2.28 to 48.5%, with a simultaneous decrease in palmitic, oleic and linoleic acids. HPLC analysis of tocopherols and tocotrienols was carried out and their content in modified RBO was not significantly affected compared to that of native RBO. The oryzanol content of the modified RBO was reduced from 1.02 to 0.68%. Melting and crystallizing characteristics of the modified fat were studied using differential scanning calorimetry. The total solid fat content at 25 °C increased from 26.12 to 34.8% with an increase in stearic acid incorporation into RBO from 38 to 48%, but it was comparatively less than for cocoa butter and vanaspati. However, the modified RBO completely melted at 37 °C and was useful as plastic fat for various culinary purposes, bakery and confectionary applications. The results of the present study indicated that structured lipids prepared from RBO rich in stearic acid retained their beneficial nutraceuticals; in addition, they do not contain any trans fatty acids.  相似文献   

6.
Chopra R  Sambaiah K 《Lipids》2009,44(1):37-46
Lipase-catalyzed interesterification was used to prepare different structured lipids (SL) from rice bran oil (RBO) by replacing some of the fatty acids with α-linolenic acid (ALA) from linseed oil (LSO) and n-3 long chain polyunsaturated fatty acids (PUFA) from cod liver oil (CLO). In one SL, the ALA content was 20% whereas in another the long chain n-3 PUFA content was 10%. Most of the n-3 PUFA were incorporated into the sn-1 and sn-3 positions of triacylglycerol. The influence of SL with RBO rich in ALA and EPA + DHA was studied on various lipid parameters in experimental animals. Rats fed RBO showed a decrease in total serum cholesterol by 10% when compared to groundnut oil (GNO). Similarly structured lipids with CLO and LSO significantly decreased total serum cholesterol by 19 and 22% respectively compared to rice bran oil. The serum TAGs level of rats fed SLs and blended oils were also significantly decreased by 14 and 17% respectively compared to RBO. Feeding of an n-3 PUFA rich diet resulted in the accumulation of long chain n-3 PUFA in various tissues and a reduction in the long chain n-6 PUFA. These studies indicate that the incorporation of ALA and EPA + DHA into RBO can offer health benefits.  相似文献   

7.
Solid–liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the α polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal β and β′ solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, γ-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. γ-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.  相似文献   

8.
The effect of the ingestion of large amounts of thetrans, trans isomer of linolein upon the cholesterol and lipid levels of the blood and liver was investigated using hypercholesterolemic rats. The serum levels of esterified fatty acids and cholesterol of rats fed the diets containing 30% oftrans, trans linoleic acid glycerides and safflower oil were 15 and 25%, respectively, lower than those fed coconut oil. However, a weight loss associated with less intake of thetrans isomer as compared with a gain with the other two fats must be considered. The serum levels of labeled cholesterol of rats administered radioactive cholesterol along with thetrans isomer were intermediate in maximum value as compared to the levels obtained with coconut and safflower oils. These results suggest that thetrans isomers are not as effective as thecis isomers in lowering the cholesterol and lipids of the blood. The livers of the former group had a lower fat content than the latter which might be accounted for in part by the lower fat intake Presented at AOCS Meeting, Houston, Texas, 1965.  相似文献   

9.
10.
Two nutritional models, essential fatty acid (EFA) deficiency and the feeding of saturated vs unsaturated fats, were used to determine the effects of dietary lipids on the fatty acid composition of rat lung and lavage. Semipurified diets containing 7% corn oil, 7% hydrogenated coconut oil (EFA-deficient), 10% butter or 10% safflower oil were fed to dams during lactation and thereafter to their offspring for a total of 24 weeks. Lipids were extracted from the lung lavage and lung tissue and their fatty acid composition was determined. The content of dipalmitoylphosphatidylcholine (DPPC), the main surfactant in the lungs, was also determined. The results show that the levels of DPPC in the lungs of rats fed 10% butter decreased although the decrease in the EFA-deficient rats was greater. Comparing rats fed butter with those fed corn oil, there were also modifications in the fatty acid composition of the total lipids and phospholipids of lung tissue and lavage as well as in phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol +phosphatidylserine fractions isolated from the lung tissue. The changes in fatty acid composition were somewhat fewer in rats fed butter then in those fed an EFA-deficient diet. The results suggest that a marginal EFA deficiency produced in rats by long-term feeding of 10% butter may account for the reduction in DPPC levels and in the changes in fatty acid composition in the lung tissue and lavage.  相似文献   

11.
Kim HK  Choi H 《Lipids》2001,36(12):1331-1336
This study was designed to examine the effects of dietary n−3 and n−6 polyunsaturated fatty acids (PUFA) on postprandial lipid levels and fatty acid composition of hepatic membranes. Male Sprague-Dawley rats were trained for a 3−h feeding protocol and fed one of five semipurified diets: one fat-free diet or one of four diets supplemented with 10% (by weight) each of corn oil, beef tallow, perilla oil, and fish oil. Two separate experiments were performed, 4-wk long-term and 4-d short-term feeding models, to compare the effects of feeding periods. Postprandial plasma lipid was affected by dietary fats. Triacylglycerol (TG) and total cholesterol levels were decreased in rats fed perilla oil and fish oil diets compared with corn oil and beef tallow diets. Hepatic TG and total cholesterol levels were also reduced by fish oil and perilla oil diets. Fatty acid composition of hepatic microsomal fraction reflected dietary fatty acids and their metabolic conversion. The major fatty acids of rats fed the beef tallow diet were palmitic, stearic, and oleic. Similarly, linoleic acid (LA) and arachidonic acid in the corn oil group, α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) in the perilla oil group, and palmitic acid and docosahexaenoic acid (DHA) in the fish oil group were detected in high proportions. Both long- and short-term feeding experiments showed similar results. In addition, microsomal DHA content was negatively correlated with plasma lipid levels. Hepatic lipid levels were also negatively correlated with EPA and DHA contents. These results suggest that n−3 ALA has more of a hypolipidemic effect than n−6 LA and that the hypolipidemic effect of n−3 PUFA may be partly related to the increase of EPA and DHA in hepatic membrane.  相似文献   

12.
Seed crystals isolated from Ivory Coast cocoa butter were shown to differ in chemical and thermal characteristics from solidified Ivory Coast butter. Higher concentrations of complex lipids in the seed crystals have led to speculation on the role these polar molecules play in lipid crystallization events. Phospholipids separated from lipid seed crystal isolates were twelve-fold more concentrated than the original cocoa butter. Seed crystals contained 3.99% phospholipids while cocoa butter samples contained 0.34%. Phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, lysophosphatidylcholine, phosphatidylserine, and phosphatidic acid were identified in cocoa butter with phosphatidylcholine (37.7%), phosphatidylglycerol (27.3%) and phosphatidyl-ethanolamine (15.6%) being the major phospholipid constituents. Two phospholipids not previously reported in cocoa butter were identified as phosphatidylglycerol and diphosphatidylglycerol based on co-migration of standards. Cocoa butter and its seed crystals contained the same phospholipid entities; however, individual phospholipids differed significantly in concentration. Phosphatidylethanolamine (30.4%) and phosphatidylcholine (30.2%) were the major phospholipids in seed crystal samples. Fatty acid composition of cocoa butter and seed crystal phospholipids were found to be similar, with the exception of myristic, stearic and oleic acids. Myristic acid was three-fold higher in phosphatidylglycerol and phosphatidylethanolamine in the seed crystals, whereas stearic acid was significantly lower in the seed crystals when compared to the cocoa butter. Concentrations of oleic acid were twice as high in seed crystal phosphatidylethanol-amine and almost four times as high in seed crystal phosphatidylcholine than in corresponding cocoa butter samples. The possible role phospholipids play in seed crystal development and in crystallization events is discussed.  相似文献   

13.
The enantiomeric composition of the monounsaturated triacylglycerols (TG) from cocoa butter was estimated. The monounsaturated TG were separated into three fractions by reversed-phase high-performance liquid chromatography (HPLC), and each fraction was subjected to the stereospecific analysis with chiral-phase HPLC. The results indicated that the major TG consisted of equal amounts of 1-stearoyl-2-oleoyl-3-palmitoyl-sn-glycerol (SOP-sn-TG) and POS-sn-TG (47 mol%), 1,3-distearoyl-2-oleoyl-glycerol (SOS-TG) (33 mol%), and POP-TG (19 mol%). The contents of SOP-sn-TG and POS-sn-TG are 1.30 times that of the POP-TG content, and the SOS-TG content is 1.302 times that of the POP-TG content. The term “priority factor” is proposed for the ratio of the stearoyl group/palmitoyl group, 1:30 at thesn-1 andsn-3 or 1(3)-position. It shows a distinct specificity for particular fatty acids or their Coenzyme A esters in random esterification at each position of the glycerol moiety in the biosynthesis of cocoa butter TG.  相似文献   

14.
Purified diets varying in dietary protein, namely casein (CA), soy protein (SP), fish protein (FP), and lipid origin (corn oil (CN), coconut oil (CO)) were fed to rabbits to evaluate the effects of protein and fat source, as well as protein-lipid interactions, on serum total, lipoprotein and hepatic lipid levels. Dietary proteins and lipids exerted a separate effect on serum total cholesterol (C), very low-density lipoprotein cholesterol (VLDL-C), and low-density lipoprotein cholesterol to high density lipoprotein cholesterol (LDL-C/HDL-C) ratio. Hence, CA increased serum cholesterol compared to SP, while coconut oil enhanced serum and VLDL-C, and decreased LDL-C/HDL-C compared to corn oil. Dietary proteins interacted with dietary lipids to modulate HDL-C levels. Thus, FP maintained a high level of HDL-C regardless of lipid origin, compared to CA and SP whose HDL-C levels were decreased by corn oil, compared to coconut oil. A dietary protein-lipid interaction was also observed in the regulation of liver cholesterol levels. Coconut oil, compared to corn oil, decreased liver cholesterol in rabbits fed FP, whereas hepatic cholesterol concentration was unaltered by dietary lipid source in CA- and SP-fed rabbits. These results demonstrate that dietary proteins act synergistically with dietary lipids to regulate cholesterol metabolism in the rabbit. This work was presented in part at the 74th Annual FASEB meeting held in Washington, D.C., April 1–5, 1990.  相似文献   

15.
Semipurified diets containing different lipids were fed to rat dams during lactation and subsequently to their pups for 33 weeks post-weaning. Some rats within each group were exposed to oxygen at hyperbaric pressure (OHP). Lipid peroxide levels were lower in lungs of rats fed 7% hydrogenated coconut oil or 10% butter as compared with their controls, fed 7% corn oil or 10% safflower oil, respectively. Exposure to OHP increased lung peroxide levels. This increase varied with the type of fat in the diet. Studies of the fatty acid composition indicate that lipid peroxide levels generally increased with an increase in the levels of 18∶2 in lung total lipids. The results suggest that the type of dietary lipid may alter the susceptibility of the animal to pulmonary oxygen toxicity.  相似文献   

16.
Hunter JE 《Lipids》2001,36(7):655-668
This article reviews published literature on how the stereospecific structure of dietary triglycerides may affect lipid metabolism in humans. Animal studies have shown enhanced absorption of fatty acids in the sn-2 position of dietary triglycerides. Increasing the level of the saturated fatty acid palmitic acid in the sn-2 position (e.g., by interesterification of the fat to randomize the positions of the fatty acids along the glycerol backbone) has been shown in rabbits to increase the atherogenic potential of the fat without impacting levels of blood lipids and lipoproteins. In contrast, enhancing the level of stearic acid in the sn-2 position has not been found to affect either atherogenic potential or levels of blood lipids and lipoproteins in rabbit. Fatty acids other than palmitic and stearic have not been studied systematically with respect to possible positional effects. A limited number of human studies have shown no significant effects of interesterified fats on blood lipid parameters. However, it is unknown whether modifying the stereospecific structure of dietary triglycerides would affect atherogenicity or other long-term health conditions in humans. It is possible that incorporation of palmitic acid into the sn-2 position of milk fat is beneficial to the human infant (as a source of energy for growth and development) but not to human adults. Additional research is needed to determine whether processes like interesterification, which can be used to alter physical parameters of dietary fats (e.g., melting characteristics), may result in favorable or unfavorable long-term effects in humans.  相似文献   

17.
Rabbits were fed diets including cholesterol and 10% butterfat to determine whether polyunsaturated butter (9% 18∶2) would be less atherogenic than normal saturated butter (3% 18∶2) when fed for 12 weeks. The cholesterol diets alone, 0.5% or 2%, produced aortic plaque development, and plasma cholesterol increased 20 times, lipids increased 10 times, and vitamin E increased 5 times. The inclusion of both fat and cholesterol in the diet produced a synergistic effect, doubling these values to 40 times for cholesterol, 20 times for lipids, and 10 times for vitamin E. The higher circulating levels of cholesterol caused increased tissue levels of cholesterol. With 2% cholesterol and fat, liver and aorta cholesterol increased 10 times, heart 4 times, and muscle cholesterol 2 times. The lower 0.5% dietary cholesterol load was successful in limiting the amount of tissue cholesterol increase. Liver, aorta, heart, and muscle levels of cholesterol were only about half the concentration attained when 2% cholesterol was fed. It was concluded that there were no differences in plasma or tissue cholesterol, vitamin E, or atherosclerosis attributable to the polyunsaturated nature of the diet. The 10% butterfat diets alone, whether saturated or unsaturated, did not induce aortic plaques and did not increase blood or tissue cholesterol, lipids, or vitamin E. Our results suggest that the lipid mobilizing effect is mediated by cholesterol, probably by conversion to bile acids and a stimulation in intestinal absorption.  相似文献   

18.
Fatty livers and the similarity between the skin lesions in kwashiorkor and those described in experimental essential fatty acid (EFA) deficiency have led to the hypothesis that protein and EFA deficiencies may both occur in chronic malnutrition. The relationship between serum very low density lipoprotein (VLDL) and hepatic lipid composition was studied after 28 d of protein depletion to determine the interactions between dietary protein levels and EFA availability. Rats were fed purified diets containing 20 or 2% casein and 5% fat as either soybean oil rich in EFA, or salmon oil rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, or hydrogenated coconut, oil poor in EFA. Animals were divided into six groups, SOC (20% casein +5% soybean oil), SOd (2% casein +5% soybean oil), COC (20% casein +5% hydrogenated coconut oil), COd (2% casein + 5% hydrogenated coconut oil), SAC (20% casein +5% salmon oil) and SAd (2% casein +5% salmon oil). After 28 d, liver steatosis and reduced VLDL-phospholipid contents (P<0.001) were observed in protein-deficient rats. In protein deficiency, triacylglycerol and phospholipid fatty acid compositions in both liver and VLDL showed a decreased polyunsaturated-to-saturated fatty acid ratio. This ratio was higher with the salmon oil diets and lower with the hydrogenated coconut oil diets. Furthermore, independent of the oil in the diet, protein deficiency decreased linoleic and arachidonic acids in VLDL phospholipids. Conversely, despite decreased proportions of EPA at low protein levels, DHA levels remained higher in rats fed salmon oil diets. While in rats fed the hydrogenated coconut oil-fed diets the amount of 22∶5n−6 was lower in liver, it was higher in VLDL lipids at low protein levels. Both EPA and arachidonic acid are precursors of eicosanoids and their diminution may be related to certain clinical symptoms seen in infants suffering from kwashiorkor.  相似文献   

19.
Canola oil is not presently permitted in infant formulations in the United States because of lack of information concenring the effects of feeding canola oil to the newborn. We have previously reported a transient decrease in platelet counts and an increase in platelet size in newborn piglets fed canola oil for 4 wk, and have confirmed this in the present study. In canola oil-fed piglets, changes in platelet size and number were overcome by adding either long-chain saturated fatty acids from cocoa butter (16:0 and 18:0), or shorter-chain saturates from coconut oil (12:0 and 14:0). Feeding a high erucic acid rapeseed (HEAR) oil, with 20% 22:1n−9, led to an even greater platelet reduction and increased platelet size throughout the 4-wk trial. Bleeding times were longer in piglets fed canola oil or HEAR oil compared to sow-reared and soybean oil-fed piglets. There were no other diet-related changes. Diet-induced platelet changes were not related to platelet lipid class composition, but there were fatty acid changes. The incorporation of 22:1n−9 into platelet phospholipids of piglets fed canola oil was low (0.2–1.2%), and even for the HEAR oil group ranged from only 0.2% in phosphatidylinositol to 2.4% in phosphatidylserine. A much greater change was observed in the concentration of 24:1n−9 and in the 24:1n−9/24:0 ratio in platelet sphingomyelin (SM). The 24:1n−9 increased to 49% in the HEAR oil group compared to about 12% in animals fed the control diets (sow-reared piglets and soybean oil-fed group), while the 24:1n−9/24:0 ratio increased from about 1 to 12. Even feeding canola oil, prepared to contain 2% 22:1n−9, led to a marked increase in 24:1n−9 to 29% and had a 24:1n−9/24:0 ratio of 5. The canola oil/cocoa butter group, which also contained 2% 22:1n−9, showed a lower level of 24:1n−9 (20%) and the 24:1n−9/24:0 ratio (3) compared to the canola oil group. The results suggest that the diet-related platelet changes in newborn piglets may be related to an increase in 24:1n−9 in platelet SM, resulting from chain elongation of 22:1n−9. The inclusion of canola oil as the sole source of fat in the milk-replacer diets of newborn piglets resulted in significant platelet and lipid changes.  相似文献   

20.
The fatty acid and triacylglycerol composition of pili nut (Canarium ovatum) oil and fractions were analyzed by gas chromatography and reversed-phase high-performance liquid chromatography, respectively. The oil obtained by solvent extraction was low in polyunsaturated fatty acids and high in saturates. The polyunsaturated fatty acid (18∶2 and 18∶3) contents were less than 11%, whereas palmitic (16∶0) and stearic acid (18∶0) were 33.3 and 10.9%, respectively. The saturated fatty acid level of the low-melting fraction oil was reduced from 44.4 to 35.5% and the total unsaturated fatty acid levels were increased from 55.6 to 65% by fractional crystallization. Triacylglycerol analysis showed that the high-melting fraction (HM) from pili nut oil consisted of POP, POS, and SOS+SSO (P=palmitic acid, O=oleic acid, and S=stearic acid) in the proportion of 48.6, 38.8, and 8.7%, respectively. The physicochemical properties of the HM fraction were studied using differential scanning calorimetry and pulsed nuclear magnetic resonance. The results showed that the melting range and solid fat content of the HM fraction were very similar to those isolated from cocoa butter and olive oil. The content of POP played an important role in determining the melting range of the HM fraction. It is suggested that this HM fraction may have applications as a cocoa butter substitute in confectionery products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号