共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
轴承是石油钻机中易发生故障的旋转支撑零部件。在石油钻机轴承运行状态的监测数据中,发生故障的样本所占的比例很小。如何从监测数据中准确地识别出少量的故障样本成为一个难题。对支持向量机(Twin Support Vectorm achine,TWSVM)能很好地解决这一难题,它通过构造两个非平行的超平面来完成,其中每个超平面都要尽可能地接近自身对应的样本而远离别的样本。文中运用石油钻机轴承故障诊断实验检验TW SV M的效果,结果表明TWSVM的识别精度高,运行速度快,为以后做类似的石油钻机轴承故障检测提供了一种新的分析方法。 相似文献
4.
5.
6.
王雪茹 《China Equipment》2009,(6X):236-236
由于我国汉字的特殊性,汉字识别与字母和数字的识别有很大的不同,相对于字母和数字来说,汉字的识别是一个难点,采用常规的模板匹配方法难以保证识别正确率,所以需要寻找一种可以避免提取大量信息以减少识别误差的汉字识别方法--支持向量机(SVM,Support Vector Machine)方法。 相似文献
7.
针对拓扑形状结构相似、仅在局部细节上有差别的曲轴识别问题,提出一种基于特征融合的深度支持向量机(DSVM)识别方法,该方法将深度神经网络与多个支持向量机(SVM)相结合构成一种网络模型,通过最大限度地利用支持向量结构风险最小化原理提取深层特征,以建立特征和目标值之间的复杂非线性映射关系,保证模型的泛化能力.该模型包含数... 相似文献
8.
9.
针对早期滚动故障特征不明显和特征提取难等问题,将一种新的衡量时间序列复杂性的方法--复合多尺度熵(CMSE)应用于滚动轴承故障振动信号的特征提取。CMSE克服了多尺度熵中粗粒化方式的不足,得到的熵值一致性和稳定性好。同时,针对机械故障智能诊断中收集大量的样本比较容易而要对所有的样本进行类别标记却较为困难这一问题,将拉普拉斯支持向量机(LapSVM)应用于滚动轴承故障的智能诊断中。在此基础上,提出了一种基于CMSE,序列前向选择(SFS)特征选择和LapSVM的滚动轴承故障诊断方法。最后,将提出的方法应用于试验数据分析,结果表明:CMSE能够有效地提取滚动轴承的故障特征;当有标记样本的数量较少时,与仅使用有标记样本进行学习的支持向量机相比,结合SFS特征选择的LapSVM方法利用大量的无标记样本进行辅助学习,可以显著提高故障诊断的正确率。 相似文献
10.
基于支持向量机的滚动轴承故障诊断研究 总被引:1,自引:2,他引:1
在分析支持向量机多分类算法和滚动轴承故障诊断特征向量的基础上,建立了基于支持向量机的滚动轴承故障诊断模型,并对模型进行了鲁棒性研究.对建立的数学模型进行了试验验证,结果表明,建立的诊断模型对轴承故障诊断具有良好的诊断效果. 相似文献
11.
针对有标记故障样本不足和故障数据高维非线性的问题,提出了基于半监督拉普拉斯特征映射(LE)算法的故障诊断模型。该模型运用LE算法,直接从原始高维振动信号中提取低维流形特征,并将其输入到基于LE的半监督分类器,从而识别出机械设备的运行状态。与传统方法相比,该模型能明显提高滚动轴承和齿轮的故障识别性能。 相似文献
12.
在旋转机械故障智能诊断中,收集大量的样本比较容易,而要对所有的样本进行类别标记却较为困难。针对这一问题,提出了一种基于拉普拉斯支持向量机的旋转机械故障智能诊断方法。滚动轴承故障诊断实例表明,有标记样本的数量较少时,与仅使用有标记样本进行学习的支持向量机相比,基于拉普拉斯支持向量机的诊断方法利用大量的无标记样本进行辅助学习,可以显著提高故障诊断的正确率。 相似文献
13.
针对滚动轴承非平稳振动信号的特征提取及维数优化问题,提出了融合局部均值分解与拉普拉斯特征映射的轴承故障诊断方法。首先,通过局部均值分解对非平稳振动信号进行平稳化分解,提取乘积函数分量、瞬时频率及瞬时幅值的高维信号特征集;然后,将高维特征集作为拉普拉斯特征映射算法的学习对象,提取轴承高维故障特征集的内在流形分布,以获得敏感、稳定的轴承振动特征参数,实现基于非平稳振动信号分析的滚动轴承故障特征提取;最后,结合支持向量分类模型量化LMD-LE方法的特征提取效果,实现不同状况下的轴承故障分类。轴承故障样本分类识别平均正确率达到91.17%,表明LMD-LE方法有效实现了高维局部均值分解特征集合的降噪,所提取的特征矩阵对轴承故障特征描述准确。 相似文献
14.
吴春光;王建朝;化麒 《轴承》2016,(12):39-42
针对滚动轴承故障诊断中难以获得大量典型的故障样本,以及统计参数对于滚动轴承故障的多分类效果不理想问题,提出了一种基于零空间追踪算法和支持向量机的故障模式识别方法。首先,根据轴承振动模型估计出相应的微分算子;然后,利用上述微分算子将轴承故障信号分解为一系列具备轴承故障特征的窄带信号之和;最后,计算各窄带信号的统计参数,构造特征向量并利用SVM进行故障模式识别。与传统SVM的对比分析试验结果表明:该方法的诊断准确率高达95%,比传统SVM提高了15%,可有效实现滚动轴承故障的模式识别。 相似文献
15.
针对化工过程数据的非线性和动态性分布特征,引入Laplacian特征映射(LE),提出了一种基于改进最大方差展开(MVU)的特征提取算法.在改进算法中,局部以欧式距离、全局以测地线距离为尺度度量数据间差异性,以更好反映数据内在几何性质;此外,借鉴LE算法思路,通过最小化近邻点间距离实现流形结构保持.改进算法兼具全局特性保持和局部流形学习能力,计算效率也有较大提高.将其用于提取非线性动态过程高维数据子流形特征,利用SVDD在特征空间建立故障检测模型,构造统计量并确定其控制限.TE过程仿真及丙烯聚合过程实验研究表明改进方法能有效挖掘过程特征信息、监控过程变化并及时检测故障发生,故障检测率较传统方法有显著提高. 相似文献
16.
快速固有成分滤波特征融合的轴承故障诊断方法 总被引:1,自引:0,他引:1
稀疏滤波故障特征增强方法依托故障信息固有的稀疏性可以有效实现轴承微弱故障诊断,但其存在两类弊端:经验地设置其输入、输出维度,引起特征提取效果的不确定性;需要利用先验知识从优化的权重矩阵中严格地筛选出特定成分,造成故障特征信息损失。针对上述问题,提出快速固有成分滤波特征融合方法。首先,引入复杂性测度设计自适应的稀疏滤波维度参数选取准则,并采用稀疏滤波优化目标指数遴选出一簇故障信息丰富的融合源;其次,建立故障特征融合源流形学习融合策略,包括改进流形学习方法融合遴选出的融合源,构造融合分量异常幅值检测策略和给出了最大化故障信息的融合分量加权表示。提出方法可解决稀疏滤波维度参数选择、特征筛选造成信息损失和固有流形幅值异常引起包络谱奇异等问题。仿真和试验结果验证所提出方法相较于现有流形学习和稀疏滤波等方法具有更强的轴承微弱故障特征提取能力。 相似文献
17.
针对不同工况下存在两域分布差异复杂的问题,提出自适应正则化迁移学习的不同工况下滚动轴承故障诊断方法。首先,训练基分类器为目标域预测伪标签,利用联合分布适配对齐两域分布,以减小分布差异;其次,通过流形正则化对目标域数据进一步利用,挖掘数据的潜在分布几何结构,学习目标域数据分布信息;最后,利用在结构风险最小化框架下建立的分类器结合上述两步学习策略,迭代更新伪标签获得最优系数矩阵完成不同工况下滚动轴承故障诊断。在两组滚动轴承数据集上进行实验验证,实验结果显示所提方法识别准确率分别达到了96.38%,94.18%。证明该方法能够有效应对多种工况导致的复杂分布差异,同时具有较好的有效性和可行性。 相似文献
18.
虞浒;缪小冬;顾寅骥;荀志文;隋天举 《轴承》2024,(2):66-73
针对深度诊断模型较难处理信号紧邻特征点以及变工况导致模型诊断精度和泛化性能不足的问题,提出基于格拉姆角场(GAF)和DarkNet-53图像识别算法的滚动轴承故障诊断方法。通过GAF编码将原始振动信号转换为具有时序相关性的二维特征图像,将特征图像输入DarkNet-53进行特征自提取和故障诊断。基于凯斯西储大学(CWRU)滚动轴承数据集和南京工业大学转盘轴承数据集并通过变载荷工况分析对所提算法进行验证,同时与目前流行的智能诊断方法及二维重构诊断方法进行对比,结果表明变工况下GAF-DarkNet算法具有更好的泛化能力和故障识别效果。 相似文献
19.
20.
为更好地对滚动轴承进行状态监测和故障诊断,采集3种不同状态下的滚动轴承振动信号,根据振动信号特点提取其时域和频域的相关特征,然后分别利用SVM(支持向量机)和BP神经网络进行模式识别。不断减少每种状态下训练样本集的个数,利用2种不同的方法进行模式识别。当每种状态下的样本个数为3个时,支持向量机仍然能准确地将测试样本进行分类,而BP神经网络完全无法识别。实验结果表明,支持向量机比BP神经网络更适合于小样本的故障诊断。 相似文献